![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.32ri | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (inference rule). (Contributed by NM, 12-Mar-1995.) |
Ref | Expression |
---|---|
pm5.32i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.32ri | ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32i.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | pm5.32i 669 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) |
3 | ancom 466 | . 2 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜑 ∧ 𝜓)) | |
4 | ancom 466 | . 2 ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜑 ∧ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4i 292 | 1 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜒 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 |
This theorem is referenced by: anbi1i 731 pm5.61 749 oranabs 901 pm5.36 923 pm5.75 978 2eu5 2557 ceqsralt 3229 ceqsrexbv 3337 reuind 3411 rabsn 4256 preqsn 4393 reusv2lem4 4872 reusv2lem5 4873 dfoprab2 6701 fsplit 7282 xpsnen 8044 elfpw 8268 rankuni 8726 prprrab 13255 isprm2 15395 ismnd 17297 dfgrp2e 17448 pjfval2 20053 neipeltop 20933 cmpfi 21211 isxms2 22253 ishl2 23166 wwlksn0s 26746 clwwlksn2 26910 pjimai 29035 bj-snglc 32957 isbndx 33581 inecmo2 34121 inecmo3 34126 cdlemefrs29pre00 35683 cdlemefrs29cpre1 35686 dihglb2 36631 elnonrel 37891 pm13.193 38612 |
Copyright terms: Public domain | W3C validator |