Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia0 Structured version   Visualization version   GIF version

Theorem dia0 36341
Description: The value of the partial isomorphism A at the lattice zero is the singleton of the identity translation i.e. the zero subspace. (Contributed by NM, 26-Nov-2013.)
Hypotheses
Ref Expression
dia0.b 𝐵 = (Base‘𝐾)
dia0.z 0 = (0.‘𝐾)
dia0.h 𝐻 = (LHyp‘𝐾)
dia0.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
dia0 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼0 ) = {( I ↾ 𝐵)})

Proof of Theorem dia0
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 hlatl 34647 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
3 dia0.b . . . . . 6 𝐵 = (Base‘𝐾)
4 dia0.z . . . . . 6 0 = (0.‘𝐾)
53, 4atl0cl 34590 . . . . 5 (𝐾 ∈ AtLat → 0𝐵)
62, 5syl 17 . . . 4 (𝐾 ∈ HL → 0𝐵)
76adantr 481 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0𝐵)
8 dia0.h . . . . 5 𝐻 = (LHyp‘𝐾)
93, 8lhpbase 35284 . . . 4 (𝑊𝐻𝑊𝐵)
10 eqid 2622 . . . . 5 (le‘𝐾) = (le‘𝐾)
113, 10, 4atl0le 34591 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑊𝐵) → 0 (le‘𝐾)𝑊)
122, 9, 11syl2an 494 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 (le‘𝐾)𝑊)
13 eqid 2622 . . . 4 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
14 eqid 2622 . . . 4 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
15 dia0.i . . . 4 𝐼 = ((DIsoA‘𝐾)‘𝑊)
163, 10, 8, 13, 14, 15diaval 36321 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 0𝐵0 (le‘𝐾)𝑊)) → (𝐼0 ) = {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 })
171, 7, 12, 16syl12anc 1324 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼0 ) = {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 })
182ad2antrr 762 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ AtLat)
193, 8, 13, 14trlcl 35451 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ 𝐵)
203, 10, 4atlle0 34592 . . . . 5 ((𝐾 ∈ AtLat ∧ (((trL‘𝐾)‘𝑊)‘𝑓) ∈ 𝐵) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 ↔ (((trL‘𝐾)‘𝑊)‘𝑓) = 0 ))
2118, 19, 20syl2anc 693 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 ↔ (((trL‘𝐾)‘𝑊)‘𝑓) = 0 ))
223, 4, 8, 13, 14trlid0b 35465 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓 = ( I ↾ 𝐵) ↔ (((trL‘𝐾)‘𝑊)‘𝑓) = 0 ))
2321, 22bitr4d 271 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0𝑓 = ( I ↾ 𝐵)))
2423rabbidva 3188 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 } = {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ 𝑓 = ( I ↾ 𝐵)})
253, 8, 13idltrn 35436 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊))
26 rabsn 4256 . . 3 (( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊) → {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ 𝑓 = ( I ↾ 𝐵)} = {( I ↾ 𝐵)})
2725, 26syl 17 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ 𝑓 = ( I ↾ 𝐵)} = {( I ↾ 𝐵)})
2817, 24, 273eqtrd 2660 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼0 ) = {( I ↾ 𝐵)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {crab 2916  {csn 4177   class class class wbr 4653   I cid 5023  cres 5116  cfv 5888  Basecbs 15857  lecple 15948  0.cp0 17037  AtLatcal 34551  HLchlt 34637  LHypclh 35270  LTrncltrn 35387  trLctrl 35445  DIsoAcdia 36317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-disoa 36318
This theorem is referenced by:  dib0  36453
  Copyright terms: Public domain W3C validator