MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralbii2 Structured version   Visualization version   GIF version

Theorem ralbii2 2978
Description: Inference adding different restricted universal quantifiers to each side of an equivalence. (Contributed by NM, 15-Aug-2005.)
Hypothesis
Ref Expression
ralbii2.1 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
Assertion
Ref Expression
ralbii2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜓)

Proof of Theorem ralbii2
StepHypRef Expression
1 ralbii2.1 . . 3 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
21albii 1747 . 2 (∀𝑥(𝑥𝐴𝜑) ↔ ∀𝑥(𝑥𝐵𝜓))
3 df-ral 2917 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
4 df-ral 2917 . 2 (∀𝑥𝐵 𝜓 ↔ ∀𝑥(𝑥𝐵𝜓))
52, 3, 43bitr4i 292 1 (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1481  wcel 1990  wral 2912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737
This theorem depends on definitions:  df-bi 197  df-ral 2917
This theorem is referenced by:  ralbiia  2979  ralbii  2980  raleqbii  2990  ralrab  3368  raldifb  3750  raldifsni  4324  reusv2  4874  dfsup2  8350  iscard2  8802  acnnum  8875  dfac9  8958  dfacacn  8963  raluz2  11737  ralrp  11852  isprm4  15397  isdomn2  19299  isnrm2  21162  ismbl  23294  ellimc3  23643  dchrelbas2  24962  h1dei  28409  fnwe2lem2  37621  sdrgacs  37771
  Copyright terms: Public domain W3C validator