MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnrm2 Structured version   Visualization version   GIF version

Theorem isnrm2 21162
Description: An alternate characterization of normality. This is the important property in the proof of Urysohn's lemma. (Contributed by Jeff Hankins, 1-Feb-2010.) (Proof shortened by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
isnrm2 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅))))
Distinct variable group:   𝑐,𝑑,𝑜,𝐽

Proof of Theorem isnrm2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nrmtop 21140 . . 3 (𝐽 ∈ Nrm → 𝐽 ∈ Top)
2 nrmsep2 21160 . . . . . 6 ((𝐽 ∈ Nrm ∧ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑑 ∈ (Clsd‘𝐽) ∧ (𝑐𝑑) = ∅)) → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅))
323exp2 1285 . . . . 5 (𝐽 ∈ Nrm → (𝑐 ∈ (Clsd‘𝐽) → (𝑑 ∈ (Clsd‘𝐽) → ((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)))))
43impd 447 . . . 4 (𝐽 ∈ Nrm → ((𝑐 ∈ (Clsd‘𝐽) ∧ 𝑑 ∈ (Clsd‘𝐽)) → ((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅))))
54ralrimivv 2970 . . 3 (𝐽 ∈ Nrm → ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)))
61, 5jca 554 . 2 (𝐽 ∈ Nrm → (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅))))
7 simpl 473 . . 3 ((𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅))) → 𝐽 ∈ Top)
8 eqid 2622 . . . . . . . . . . 11 𝐽 = 𝐽
98opncld 20837 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑥𝐽) → ( 𝐽𝑥) ∈ (Clsd‘𝐽))
109adantr 481 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → ( 𝐽𝑥) ∈ (Clsd‘𝐽))
11 ineq2 3808 . . . . . . . . . . . 12 (𝑑 = ( 𝐽𝑥) → (𝑐𝑑) = (𝑐 ∩ ( 𝐽𝑥)))
1211eqeq1d 2624 . . . . . . . . . . 11 (𝑑 = ( 𝐽𝑥) → ((𝑐𝑑) = ∅ ↔ (𝑐 ∩ ( 𝐽𝑥)) = ∅))
13 ineq2 3808 . . . . . . . . . . . . . 14 (𝑑 = ( 𝐽𝑥) → (((cls‘𝐽)‘𝑜) ∩ 𝑑) = (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)))
1413eqeq1d 2624 . . . . . . . . . . . . 13 (𝑑 = ( 𝐽𝑥) → ((((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅ ↔ (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅))
1514anbi2d 740 . . . . . . . . . . . 12 (𝑑 = ( 𝐽𝑥) → ((𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅) ↔ (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅)))
1615rexbidv 3052 . . . . . . . . . . 11 (𝑑 = ( 𝐽𝑥) → (∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅) ↔ ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅)))
1712, 16imbi12d 334 . . . . . . . . . 10 (𝑑 = ( 𝐽𝑥) → (((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)) ↔ ((𝑐 ∩ ( 𝐽𝑥)) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅))))
1817rspcv 3305 . . . . . . . . 9 (( 𝐽𝑥) ∈ (Clsd‘𝐽) → (∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)) → ((𝑐 ∩ ( 𝐽𝑥)) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅))))
1910, 18syl 17 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → (∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)) → ((𝑐 ∩ ( 𝐽𝑥)) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅))))
20 inssdif0 3947 . . . . . . . . . 10 ((𝑐 𝐽) ⊆ 𝑥 ↔ (𝑐 ∩ ( 𝐽𝑥)) = ∅)
218cldss 20833 . . . . . . . . . . . . 13 (𝑐 ∈ (Clsd‘𝐽) → 𝑐 𝐽)
2221adantl 482 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → 𝑐 𝐽)
23 df-ss 3588 . . . . . . . . . . . 12 (𝑐 𝐽 ↔ (𝑐 𝐽) = 𝑐)
2422, 23sylib 208 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → (𝑐 𝐽) = 𝑐)
2524sseq1d 3632 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → ((𝑐 𝐽) ⊆ 𝑥𝑐𝑥))
2620, 25syl5bbr 274 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → ((𝑐 ∩ ( 𝐽𝑥)) = ∅ ↔ 𝑐𝑥))
27 inssdif0 3947 . . . . . . . . . . . 12 ((((cls‘𝐽)‘𝑜) ∩ 𝐽) ⊆ 𝑥 ↔ (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅)
28 simpll 790 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top)
29 elssuni 4467 . . . . . . . . . . . . . . 15 (𝑜𝐽𝑜 𝐽)
308clsss3 20863 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ 𝑜 𝐽) → ((cls‘𝐽)‘𝑜) ⊆ 𝐽)
3128, 29, 30syl2an 494 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) ∧ 𝑜𝐽) → ((cls‘𝐽)‘𝑜) ⊆ 𝐽)
32 df-ss 3588 . . . . . . . . . . . . . 14 (((cls‘𝐽)‘𝑜) ⊆ 𝐽 ↔ (((cls‘𝐽)‘𝑜) ∩ 𝐽) = ((cls‘𝐽)‘𝑜))
3331, 32sylib 208 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) ∧ 𝑜𝐽) → (((cls‘𝐽)‘𝑜) ∩ 𝐽) = ((cls‘𝐽)‘𝑜))
3433sseq1d 3632 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) ∧ 𝑜𝐽) → ((((cls‘𝐽)‘𝑜) ∩ 𝐽) ⊆ 𝑥 ↔ ((cls‘𝐽)‘𝑜) ⊆ 𝑥))
3527, 34syl5bbr 274 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) ∧ 𝑜𝐽) → ((((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅ ↔ ((cls‘𝐽)‘𝑜) ⊆ 𝑥))
3635anbi2d 740 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) ∧ 𝑜𝐽) → ((𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅) ↔ (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)))
3736rexbidva 3049 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → (∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅) ↔ ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)))
3826, 37imbi12d 334 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → (((𝑐 ∩ ( 𝐽𝑥)) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ ( 𝐽𝑥)) = ∅)) ↔ (𝑐𝑥 → ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥))))
3919, 38sylibd 229 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑥𝐽) ∧ 𝑐 ∈ (Clsd‘𝐽)) → (∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)) → (𝑐𝑥 → ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥))))
4039ralimdva 2962 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)) → ∀𝑐 ∈ (Clsd‘𝐽)(𝑐𝑥 → ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥))))
41 elin 3796 . . . . . . . . . 10 (𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥) ↔ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑐 ∈ 𝒫 𝑥))
42 selpw 4165 . . . . . . . . . . 11 (𝑐 ∈ 𝒫 𝑥𝑐𝑥)
4342anbi2i 730 . . . . . . . . . 10 ((𝑐 ∈ (Clsd‘𝐽) ∧ 𝑐 ∈ 𝒫 𝑥) ↔ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑐𝑥))
4441, 43bitri 264 . . . . . . . . 9 (𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥) ↔ (𝑐 ∈ (Clsd‘𝐽) ∧ 𝑐𝑥))
4544imbi1i 339 . . . . . . . 8 ((𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥) → ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)) ↔ ((𝑐 ∈ (Clsd‘𝐽) ∧ 𝑐𝑥) → ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)))
46 impexp 462 . . . . . . . 8 (((𝑐 ∈ (Clsd‘𝐽) ∧ 𝑐𝑥) → ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)) ↔ (𝑐 ∈ (Clsd‘𝐽) → (𝑐𝑥 → ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥))))
4745, 46bitri 264 . . . . . . 7 ((𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥) → ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)) ↔ (𝑐 ∈ (Clsd‘𝐽) → (𝑐𝑥 → ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥))))
4847ralbii2 2978 . . . . . 6 (∀𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥) ↔ ∀𝑐 ∈ (Clsd‘𝐽)(𝑐𝑥 → ∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)))
4940, 48syl6ibr 242 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)) → ∀𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)))
5049ralrimdva 2969 . . . 4 (𝐽 ∈ Top → (∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅)) → ∀𝑥𝐽𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)))
5150imp 445 . . 3 ((𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅))) → ∀𝑥𝐽𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥))
52 isnrm 21139 . . 3 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑐 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑥)∃𝑜𝐽 (𝑐𝑜 ∧ ((cls‘𝐽)‘𝑜) ⊆ 𝑥)))
537, 51, 52sylanbrc 698 . 2 ((𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅))) → 𝐽 ∈ Nrm)
546, 53impbii 199 1 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑜𝐽 (𝑐𝑜 ∧ (((cls‘𝐽)‘𝑜) ∩ 𝑑) = ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  cdif 3571  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158   cuni 4436  cfv 5888  Topctop 20698  Clsdccld 20820  clsccl 20822  Nrmcnrm 21114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-top 20699  df-cld 20823  df-cls 20825  df-nrm 21121
This theorem is referenced by:  isnrm3  21163
  Copyright terms: Public domain W3C validator