| Step | Hyp | Ref
| Expression |
| 1 | | fnwe2.f |
. . . 4
⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴⟶𝐵) |
| 2 | | ffun 6048 |
. . . 4
⊢ ((𝐹 ↾ 𝐴):𝐴⟶𝐵 → Fun (𝐹 ↾ 𝐴)) |
| 3 | | vex 3203 |
. . . . 5
⊢ 𝑎 ∈ V |
| 4 | 3 | funimaex 5976 |
. . . 4
⊢ (Fun
(𝐹 ↾ 𝐴) → ((𝐹 ↾ 𝐴) “ 𝑎) ∈ V) |
| 5 | 1, 2, 4 | 3syl 18 |
. . 3
⊢ (𝜑 → ((𝐹 ↾ 𝐴) “ 𝑎) ∈ V) |
| 6 | | fnwe2.r |
. . . 4
⊢ (𝜑 → 𝑅 We 𝐵) |
| 7 | | wefr 5104 |
. . . 4
⊢ (𝑅 We 𝐵 → 𝑅 Fr 𝐵) |
| 8 | 6, 7 | syl 17 |
. . 3
⊢ (𝜑 → 𝑅 Fr 𝐵) |
| 9 | | imassrn 5477 |
. . . 4
⊢ ((𝐹 ↾ 𝐴) “ 𝑎) ⊆ ran (𝐹 ↾ 𝐴) |
| 10 | | frn 6053 |
. . . . 5
⊢ ((𝐹 ↾ 𝐴):𝐴⟶𝐵 → ran (𝐹 ↾ 𝐴) ⊆ 𝐵) |
| 11 | 1, 10 | syl 17 |
. . . 4
⊢ (𝜑 → ran (𝐹 ↾ 𝐴) ⊆ 𝐵) |
| 12 | 9, 11 | syl5ss 3614 |
. . 3
⊢ (𝜑 → ((𝐹 ↾ 𝐴) “ 𝑎) ⊆ 𝐵) |
| 13 | | incom 3805 |
. . . . . 6
⊢ (dom
(𝐹 ↾ 𝐴) ∩ 𝑎) = (𝑎 ∩ dom (𝐹 ↾ 𝐴)) |
| 14 | | fnwe2lem2.a |
. . . . . . . 8
⊢ (𝜑 → 𝑎 ⊆ 𝐴) |
| 15 | | fdm 6051 |
. . . . . . . . 9
⊢ ((𝐹 ↾ 𝐴):𝐴⟶𝐵 → dom (𝐹 ↾ 𝐴) = 𝐴) |
| 16 | 1, 15 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → dom (𝐹 ↾ 𝐴) = 𝐴) |
| 17 | 14, 16 | sseqtr4d 3642 |
. . . . . . 7
⊢ (𝜑 → 𝑎 ⊆ dom (𝐹 ↾ 𝐴)) |
| 18 | | df-ss 3588 |
. . . . . . 7
⊢ (𝑎 ⊆ dom (𝐹 ↾ 𝐴) ↔ (𝑎 ∩ dom (𝐹 ↾ 𝐴)) = 𝑎) |
| 19 | 17, 18 | sylib 208 |
. . . . . 6
⊢ (𝜑 → (𝑎 ∩ dom (𝐹 ↾ 𝐴)) = 𝑎) |
| 20 | 13, 19 | syl5eq 2668 |
. . . . 5
⊢ (𝜑 → (dom (𝐹 ↾ 𝐴) ∩ 𝑎) = 𝑎) |
| 21 | | fnwe2lem2.n0 |
. . . . 5
⊢ (𝜑 → 𝑎 ≠ ∅) |
| 22 | 20, 21 | eqnetrd 2861 |
. . . 4
⊢ (𝜑 → (dom (𝐹 ↾ 𝐴) ∩ 𝑎) ≠ ∅) |
| 23 | | imadisj 5484 |
. . . . 5
⊢ (((𝐹 ↾ 𝐴) “ 𝑎) = ∅ ↔ (dom (𝐹 ↾ 𝐴) ∩ 𝑎) = ∅) |
| 24 | 23 | necon3bii 2846 |
. . . 4
⊢ (((𝐹 ↾ 𝐴) “ 𝑎) ≠ ∅ ↔ (dom (𝐹 ↾ 𝐴) ∩ 𝑎) ≠ ∅) |
| 25 | 22, 24 | sylibr 224 |
. . 3
⊢ (𝜑 → ((𝐹 ↾ 𝐴) “ 𝑎) ≠ ∅) |
| 26 | | fri 5076 |
. . 3
⊢
(((((𝐹 ↾ 𝐴) “ 𝑎) ∈ V ∧ 𝑅 Fr 𝐵) ∧ (((𝐹 ↾ 𝐴) “ 𝑎) ⊆ 𝐵 ∧ ((𝐹 ↾ 𝐴) “ 𝑎) ≠ ∅)) → ∃𝑑 ∈ ((𝐹 ↾ 𝐴) “ 𝑎)∀𝑒 ∈ ((𝐹 ↾ 𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑) |
| 27 | 5, 8, 12, 25, 26 | syl22anc 1327 |
. 2
⊢ (𝜑 → ∃𝑑 ∈ ((𝐹 ↾ 𝐴) “ 𝑎)∀𝑒 ∈ ((𝐹 ↾ 𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑) |
| 28 | | df-ima 5127 |
. . . . . 6
⊢ ((𝐹 ↾ 𝐴) “ 𝑎) = ran ((𝐹 ↾ 𝐴) ↾ 𝑎) |
| 29 | 28 | rexeqi 3143 |
. . . . 5
⊢
(∃𝑑 ∈
((𝐹 ↾ 𝐴) “ 𝑎)∀𝑒 ∈ ((𝐹 ↾ 𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 ↔ ∃𝑑 ∈ ran ((𝐹 ↾ 𝐴) ↾ 𝑎)∀𝑒 ∈ ((𝐹 ↾ 𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑) |
| 30 | | ffn 6045 |
. . . . . . . 8
⊢ ((𝐹 ↾ 𝐴):𝐴⟶𝐵 → (𝐹 ↾ 𝐴) Fn 𝐴) |
| 31 | 1, 30 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ↾ 𝐴) Fn 𝐴) |
| 32 | | fnssres 6004 |
. . . . . . 7
⊢ (((𝐹 ↾ 𝐴) Fn 𝐴 ∧ 𝑎 ⊆ 𝐴) → ((𝐹 ↾ 𝐴) ↾ 𝑎) Fn 𝑎) |
| 33 | 31, 14, 32 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → ((𝐹 ↾ 𝐴) ↾ 𝑎) Fn 𝑎) |
| 34 | | breq2 4657 |
. . . . . . . . 9
⊢ (𝑑 = (((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑓) → (𝑒𝑅𝑑 ↔ 𝑒𝑅(((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑓))) |
| 35 | 34 | notbid 308 |
. . . . . . . 8
⊢ (𝑑 = (((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑓) → (¬ 𝑒𝑅𝑑 ↔ ¬ 𝑒𝑅(((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑓))) |
| 36 | 35 | ralbidv 2986 |
. . . . . . 7
⊢ (𝑑 = (((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑓) → (∀𝑒 ∈ ((𝐹 ↾ 𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 ↔ ∀𝑒 ∈ ((𝐹 ↾ 𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑓))) |
| 37 | 36 | rexrn 6361 |
. . . . . 6
⊢ (((𝐹 ↾ 𝐴) ↾ 𝑎) Fn 𝑎 → (∃𝑑 ∈ ran ((𝐹 ↾ 𝐴) ↾ 𝑎)∀𝑒 ∈ ((𝐹 ↾ 𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 ↔ ∃𝑓 ∈ 𝑎 ∀𝑒 ∈ ((𝐹 ↾ 𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑓))) |
| 38 | 33, 37 | syl 17 |
. . . . 5
⊢ (𝜑 → (∃𝑑 ∈ ran ((𝐹 ↾ 𝐴) ↾ 𝑎)∀𝑒 ∈ ((𝐹 ↾ 𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 ↔ ∃𝑓 ∈ 𝑎 ∀𝑒 ∈ ((𝐹 ↾ 𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑓))) |
| 39 | 29, 38 | syl5bb 272 |
. . . 4
⊢ (𝜑 → (∃𝑑 ∈ ((𝐹 ↾ 𝐴) “ 𝑎)∀𝑒 ∈ ((𝐹 ↾ 𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 ↔ ∃𝑓 ∈ 𝑎 ∀𝑒 ∈ ((𝐹 ↾ 𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑓))) |
| 40 | 28 | raleqi 3142 |
. . . . . . . 8
⊢
(∀𝑒 ∈
((𝐹 ↾ 𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑒 ∈ ran ((𝐹 ↾ 𝐴) ↾ 𝑎) ¬ 𝑒𝑅(((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑓)) |
| 41 | | breq1 4656 |
. . . . . . . . . . 11
⊢ (𝑒 = (((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑑) → (𝑒𝑅(((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑓) ↔ (((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑓))) |
| 42 | 41 | notbid 308 |
. . . . . . . . . 10
⊢ (𝑒 = (((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑑) → (¬ 𝑒𝑅(((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑓) ↔ ¬ (((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑓))) |
| 43 | 42 | ralrn 6362 |
. . . . . . . . 9
⊢ (((𝐹 ↾ 𝐴) ↾ 𝑎) Fn 𝑎 → (∀𝑒 ∈ ran ((𝐹 ↾ 𝐴) ↾ 𝑎) ¬ 𝑒𝑅(((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑑 ∈ 𝑎 ¬ (((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑓))) |
| 44 | 33, 43 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑒 ∈ ran ((𝐹 ↾ 𝐴) ↾ 𝑎) ¬ 𝑒𝑅(((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑑 ∈ 𝑎 ¬ (((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑓))) |
| 45 | 40, 44 | syl5bb 272 |
. . . . . . 7
⊢ (𝜑 → (∀𝑒 ∈ ((𝐹 ↾ 𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑑 ∈ 𝑎 ¬ (((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑓))) |
| 46 | 45 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑎) → (∀𝑒 ∈ ((𝐹 ↾ 𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑑 ∈ 𝑎 ¬ (((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑓))) |
| 47 | 14 | resabs1d 5428 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐹 ↾ 𝐴) ↾ 𝑎) = (𝐹 ↾ 𝑎)) |
| 48 | 47 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑎) ∧ 𝑑 ∈ 𝑎) → ((𝐹 ↾ 𝐴) ↾ 𝑎) = (𝐹 ↾ 𝑎)) |
| 49 | 48 | fveq1d 6193 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑎) ∧ 𝑑 ∈ 𝑎) → (((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑑) = ((𝐹 ↾ 𝑎)‘𝑑)) |
| 50 | | fvres 6207 |
. . . . . . . . . . 11
⊢ (𝑑 ∈ 𝑎 → ((𝐹 ↾ 𝑎)‘𝑑) = (𝐹‘𝑑)) |
| 51 | 50 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑎) ∧ 𝑑 ∈ 𝑎) → ((𝐹 ↾ 𝑎)‘𝑑) = (𝐹‘𝑑)) |
| 52 | 49, 51 | eqtrd 2656 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑎) ∧ 𝑑 ∈ 𝑎) → (((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑑) = (𝐹‘𝑑)) |
| 53 | 48 | fveq1d 6193 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑎) ∧ 𝑑 ∈ 𝑎) → (((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑓) = ((𝐹 ↾ 𝑎)‘𝑓)) |
| 54 | | fvres 6207 |
. . . . . . . . . . 11
⊢ (𝑓 ∈ 𝑎 → ((𝐹 ↾ 𝑎)‘𝑓) = (𝐹‘𝑓)) |
| 55 | 54 | ad2antlr 763 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑎) ∧ 𝑑 ∈ 𝑎) → ((𝐹 ↾ 𝑎)‘𝑓) = (𝐹‘𝑓)) |
| 56 | 53, 55 | eqtrd 2656 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑎) ∧ 𝑑 ∈ 𝑎) → (((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑓) = (𝐹‘𝑓)) |
| 57 | 52, 56 | breq12d 4666 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑎) ∧ 𝑑 ∈ 𝑎) → ((((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑓) ↔ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) |
| 58 | 57 | notbid 308 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑎) ∧ 𝑑 ∈ 𝑎) → (¬ (((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑓) ↔ ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) |
| 59 | 58 | ralbidva 2985 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑎) → (∀𝑑 ∈ 𝑎 ¬ (((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑑)𝑅(((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) |
| 60 | 46, 59 | bitrd 268 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑎) → (∀𝑒 ∈ ((𝐹 ↾ 𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑓) ↔ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) |
| 61 | 60 | rexbidva 3049 |
. . . 4
⊢ (𝜑 → (∃𝑓 ∈ 𝑎 ∀𝑒 ∈ ((𝐹 ↾ 𝐴) “ 𝑎) ¬ 𝑒𝑅(((𝐹 ↾ 𝐴) ↾ 𝑎)‘𝑓) ↔ ∃𝑓 ∈ 𝑎 ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) |
| 62 | 39, 61 | bitrd 268 |
. . 3
⊢ (𝜑 → (∃𝑑 ∈ ((𝐹 ↾ 𝐴) “ 𝑎)∀𝑒 ∈ ((𝐹 ↾ 𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 ↔ ∃𝑓 ∈ 𝑎 ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) |
| 63 | 3 | inex1 4799 |
. . . . . . 7
⊢ (𝑎 ∩ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) ∈ V |
| 64 | 63 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) → (𝑎 ∩ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) ∈ V) |
| 65 | 14 | sselda 3603 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑎) → 𝑓 ∈ 𝐴) |
| 66 | | fnwe2.su |
. . . . . . . . . 10
⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) |
| 67 | | fnwe2.t |
. . . . . . . . . 10
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦))} |
| 68 | | fnwe2.s |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) |
| 69 | 66, 67, 68 | fnwe2lem1 37620 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → ⦋(𝐹‘𝑓) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) |
| 70 | | wefr 5104 |
. . . . . . . . 9
⊢
(⦋(𝐹‘𝑓) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)} → ⦋(𝐹‘𝑓) / 𝑧⦌𝑆 Fr {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) |
| 71 | 69, 70 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → ⦋(𝐹‘𝑓) / 𝑧⦌𝑆 Fr {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) |
| 72 | 65, 71 | syldan 487 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑎) → ⦋(𝐹‘𝑓) / 𝑧⦌𝑆 Fr {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) |
| 73 | 72 | adantrr 753 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) → ⦋(𝐹‘𝑓) / 𝑧⦌𝑆 Fr {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) |
| 74 | | inss2 3834 |
. . . . . . 7
⊢ (𝑎 ∩ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) ⊆ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)} |
| 75 | 74 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) → (𝑎 ∩ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) ⊆ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) |
| 76 | | simprl 794 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) → 𝑓 ∈ 𝑎) |
| 77 | 65 | adantrr 753 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) → 𝑓 ∈ 𝐴) |
| 78 | | eqidd 2623 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) → (𝐹‘𝑓) = (𝐹‘𝑓)) |
| 79 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑓 → (𝐹‘𝑦) = (𝐹‘𝑓)) |
| 80 | 79 | eqeq1d 2624 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑓 → ((𝐹‘𝑦) = (𝐹‘𝑓) ↔ (𝐹‘𝑓) = (𝐹‘𝑓))) |
| 81 | 80 | elrab 3363 |
. . . . . . . . 9
⊢ (𝑓 ∈ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)} ↔ (𝑓 ∈ 𝐴 ∧ (𝐹‘𝑓) = (𝐹‘𝑓))) |
| 82 | 77, 78, 81 | sylanbrc 698 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) → 𝑓 ∈ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) |
| 83 | 76, 82 | elind 3798 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) → 𝑓 ∈ (𝑎 ∩ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)})) |
| 84 | | ne0i 3921 |
. . . . . . 7
⊢ (𝑓 ∈ (𝑎 ∩ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) → (𝑎 ∩ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) ≠ ∅) |
| 85 | 83, 84 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) → (𝑎 ∩ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) ≠ ∅) |
| 86 | | fri 5076 |
. . . . . 6
⊢ ((((𝑎 ∩ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) ∈ V ∧ ⦋(𝐹‘𝑓) / 𝑧⦌𝑆 Fr {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) ∧ ((𝑎 ∩ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) ⊆ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)} ∧ (𝑎 ∩ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) ≠ ∅)) → ∃𝑒 ∈ (𝑎 ∩ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)})∀𝑔 ∈ (𝑎 ∩ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒) |
| 87 | 64, 73, 75, 85, 86 | syl22anc 1327 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) → ∃𝑒 ∈ (𝑎 ∩ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)})∀𝑔 ∈ (𝑎 ∩ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒) |
| 88 | | elin 3796 |
. . . . . . . 8
⊢ (𝑒 ∈ (𝑎 ∩ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) ↔ (𝑒 ∈ 𝑎 ∧ 𝑒 ∈ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)})) |
| 89 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑒 → (𝐹‘𝑦) = (𝐹‘𝑒)) |
| 90 | 89 | eqeq1d 2624 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑒 → ((𝐹‘𝑦) = (𝐹‘𝑓) ↔ (𝐹‘𝑒) = (𝐹‘𝑓))) |
| 91 | 90 | elrab 3363 |
. . . . . . . . 9
⊢ (𝑒 ∈ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)} ↔ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓))) |
| 92 | 91 | anbi2i 730 |
. . . . . . . 8
⊢ ((𝑒 ∈ 𝑎 ∧ 𝑒 ∈ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) ↔ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) |
| 93 | 88, 92 | bitri 264 |
. . . . . . 7
⊢ (𝑒 ∈ (𝑎 ∩ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) ↔ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) |
| 94 | | elin 3796 |
. . . . . . . . . . . . 13
⊢ (𝑔 ∈ (𝑎 ∩ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) ↔ (𝑔 ∈ 𝑎 ∧ 𝑔 ∈ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)})) |
| 95 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑔 → (𝐹‘𝑦) = (𝐹‘𝑔)) |
| 96 | 95 | eqeq1d 2624 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑔 → ((𝐹‘𝑦) = (𝐹‘𝑓) ↔ (𝐹‘𝑔) = (𝐹‘𝑓))) |
| 97 | 96 | elrab 3363 |
. . . . . . . . . . . . . 14
⊢ (𝑔 ∈ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)} ↔ (𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓))) |
| 98 | 97 | anbi2i 730 |
. . . . . . . . . . . . 13
⊢ ((𝑔 ∈ 𝑎 ∧ 𝑔 ∈ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) ↔ (𝑔 ∈ 𝑎 ∧ (𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)))) |
| 99 | 94, 98 | bitri 264 |
. . . . . . . . . . . 12
⊢ (𝑔 ∈ (𝑎 ∩ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) ↔ (𝑔 ∈ 𝑎 ∧ (𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)))) |
| 100 | 99 | imbi1i 339 |
. . . . . . . . . . 11
⊢ ((𝑔 ∈ (𝑎 ∩ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒) ↔ ((𝑔 ∈ 𝑎 ∧ (𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓))) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) |
| 101 | | impexp 462 |
. . . . . . . . . . 11
⊢ (((𝑔 ∈ 𝑎 ∧ (𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓))) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒) ↔ (𝑔 ∈ 𝑎 → ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒))) |
| 102 | 100, 101 | bitri 264 |
. . . . . . . . . 10
⊢ ((𝑔 ∈ (𝑎 ∩ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒) ↔ (𝑔 ∈ 𝑎 → ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒))) |
| 103 | 102 | ralbii2 2978 |
. . . . . . . . 9
⊢
(∀𝑔 ∈
(𝑎 ∩ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒 ↔ ∀𝑔 ∈ 𝑎 ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) |
| 104 | | simplrl 800 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) ∧ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) ∧ ∀𝑔 ∈ 𝑎 ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) → 𝑒 ∈ 𝑎) |
| 105 | | simpr 477 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) ∧ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) ∧ ∀𝑔 ∈ 𝑎 ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) ∧ 𝑐 ∈ 𝑎) → 𝑐 ∈ 𝑎) |
| 106 | | simplrr 801 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) ∧ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) → ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓)) |
| 107 | 106 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) ∧ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) ∧ ∀𝑔 ∈ 𝑎 ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) ∧ 𝑐 ∈ 𝑎) → ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓)) |
| 108 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑑 = 𝑐 → (𝐹‘𝑑) = (𝐹‘𝑐)) |
| 109 | 108 | breq1d 4663 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑑 = 𝑐 → ((𝐹‘𝑑)𝑅(𝐹‘𝑓) ↔ (𝐹‘𝑐)𝑅(𝐹‘𝑓))) |
| 110 | 109 | notbid 308 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 = 𝑐 → (¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓) ↔ ¬ (𝐹‘𝑐)𝑅(𝐹‘𝑓))) |
| 111 | 110 | rspcva 3307 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑐 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓)) → ¬ (𝐹‘𝑐)𝑅(𝐹‘𝑓)) |
| 112 | 105, 107,
111 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) ∧ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) ∧ ∀𝑔 ∈ 𝑎 ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) ∧ 𝑐 ∈ 𝑎) → ¬ (𝐹‘𝑐)𝑅(𝐹‘𝑓)) |
| 113 | | simprrr 805 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) ∧ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) → (𝐹‘𝑒) = (𝐹‘𝑓)) |
| 114 | 113 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) ∧ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) ∧ ∀𝑔 ∈ 𝑎 ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) ∧ 𝑐 ∈ 𝑎) → (𝐹‘𝑒) = (𝐹‘𝑓)) |
| 115 | 114 | breq2d 4665 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) ∧ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) ∧ ∀𝑔 ∈ 𝑎 ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) ∧ 𝑐 ∈ 𝑎) → ((𝐹‘𝑐)𝑅(𝐹‘𝑒) ↔ (𝐹‘𝑐)𝑅(𝐹‘𝑓))) |
| 116 | 112, 115 | mtbird 315 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) ∧ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) ∧ ∀𝑔 ∈ 𝑎 ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) ∧ 𝑐 ∈ 𝑎) → ¬ (𝐹‘𝑐)𝑅(𝐹‘𝑒)) |
| 117 | 14 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) ∧ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) ∧ ∀𝑔 ∈ 𝑎 ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) → 𝑎 ⊆ 𝐴) |
| 118 | 117 | sselda 3603 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) ∧ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) ∧ ∀𝑔 ∈ 𝑎 ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) ∧ 𝑐 ∈ 𝑎) → 𝑐 ∈ 𝐴) |
| 119 | 118 | adantrr 753 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) ∧ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) ∧ ∀𝑔 ∈ 𝑎 ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) ∧ (𝑐 ∈ 𝑎 ∧ (𝐹‘𝑐) = (𝐹‘𝑒))) → 𝑐 ∈ 𝐴) |
| 120 | | simprr 796 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) ∧ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) ∧ ∀𝑔 ∈ 𝑎 ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) ∧ (𝑐 ∈ 𝑎 ∧ (𝐹‘𝑐) = (𝐹‘𝑒))) → (𝐹‘𝑐) = (𝐹‘𝑒)) |
| 121 | 113 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) ∧ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) ∧ ∀𝑔 ∈ 𝑎 ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) ∧ (𝑐 ∈ 𝑎 ∧ (𝐹‘𝑐) = (𝐹‘𝑒))) → (𝐹‘𝑒) = (𝐹‘𝑓)) |
| 122 | 120, 121 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) ∧ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) ∧ ∀𝑔 ∈ 𝑎 ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) ∧ (𝑐 ∈ 𝑎 ∧ (𝐹‘𝑐) = (𝐹‘𝑒))) → (𝐹‘𝑐) = (𝐹‘𝑓)) |
| 123 | | simprl 794 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) ∧ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) ∧ ∀𝑔 ∈ 𝑎 ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) ∧ (𝑐 ∈ 𝑎 ∧ (𝐹‘𝑐) = (𝐹‘𝑒))) → 𝑐 ∈ 𝑎) |
| 124 | | simplr 792 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) ∧ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) ∧ ∀𝑔 ∈ 𝑎 ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) ∧ (𝑐 ∈ 𝑎 ∧ (𝐹‘𝑐) = (𝐹‘𝑒))) → ∀𝑔 ∈ 𝑎 ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) |
| 125 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑔 = 𝑐 → (𝑔 ∈ 𝐴 ↔ 𝑐 ∈ 𝐴)) |
| 126 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑔 = 𝑐 → (𝐹‘𝑔) = (𝐹‘𝑐)) |
| 127 | 126 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑔 = 𝑐 → ((𝐹‘𝑔) = (𝐹‘𝑓) ↔ (𝐹‘𝑐) = (𝐹‘𝑓))) |
| 128 | 125, 127 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 = 𝑐 → ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) ↔ (𝑐 ∈ 𝐴 ∧ (𝐹‘𝑐) = (𝐹‘𝑓)))) |
| 129 | | breq1 4656 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑔 = 𝑐 → (𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒 ↔ 𝑐⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) |
| 130 | 129 | notbid 308 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 = 𝑐 → (¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒 ↔ ¬ 𝑐⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) |
| 131 | 128, 130 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 = 𝑐 → (((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒) ↔ ((𝑐 ∈ 𝐴 ∧ (𝐹‘𝑐) = (𝐹‘𝑓)) → ¬ 𝑐⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒))) |
| 132 | 131 | rspcva 3307 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑐 ∈ 𝑎 ∧ ∀𝑔 ∈ 𝑎 ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) → ((𝑐 ∈ 𝐴 ∧ (𝐹‘𝑐) = (𝐹‘𝑓)) → ¬ 𝑐⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) |
| 133 | 123, 124,
132 | syl2anc 693 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) ∧ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) ∧ ∀𝑔 ∈ 𝑎 ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) ∧ (𝑐 ∈ 𝑎 ∧ (𝐹‘𝑐) = (𝐹‘𝑒))) → ((𝑐 ∈ 𝐴 ∧ (𝐹‘𝑐) = (𝐹‘𝑓)) → ¬ 𝑐⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) |
| 134 | 119, 122,
133 | mp2and 715 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) ∧ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) ∧ ∀𝑔 ∈ 𝑎 ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) ∧ (𝑐 ∈ 𝑎 ∧ (𝐹‘𝑐) = (𝐹‘𝑒))) → ¬ 𝑐⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒) |
| 135 | 120, 121 | eqtr2d 2657 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) ∧ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) ∧ ∀𝑔 ∈ 𝑎 ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) ∧ (𝑐 ∈ 𝑎 ∧ (𝐹‘𝑐) = (𝐹‘𝑒))) → (𝐹‘𝑓) = (𝐹‘𝑐)) |
| 136 | 135 | csbeq1d 3540 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) ∧ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) ∧ ∀𝑔 ∈ 𝑎 ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) ∧ (𝑐 ∈ 𝑎 ∧ (𝐹‘𝑐) = (𝐹‘𝑒))) → ⦋(𝐹‘𝑓) / 𝑧⦌𝑆 = ⦋(𝐹‘𝑐) / 𝑧⦌𝑆) |
| 137 | 136 | breqd 4664 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) ∧ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) ∧ ∀𝑔 ∈ 𝑎 ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) ∧ (𝑐 ∈ 𝑎 ∧ (𝐹‘𝑐) = (𝐹‘𝑒))) → (𝑐⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒 ↔ 𝑐⦋(𝐹‘𝑐) / 𝑧⦌𝑆𝑒)) |
| 138 | 134, 137 | mtbid 314 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) ∧ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) ∧ ∀𝑔 ∈ 𝑎 ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) ∧ (𝑐 ∈ 𝑎 ∧ (𝐹‘𝑐) = (𝐹‘𝑒))) → ¬ 𝑐⦋(𝐹‘𝑐) / 𝑧⦌𝑆𝑒) |
| 139 | 138 | expr 643 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) ∧ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) ∧ ∀𝑔 ∈ 𝑎 ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) ∧ 𝑐 ∈ 𝑎) → ((𝐹‘𝑐) = (𝐹‘𝑒) → ¬ 𝑐⦋(𝐹‘𝑐) / 𝑧⦌𝑆𝑒)) |
| 140 | | imnan 438 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑐) = (𝐹‘𝑒) → ¬ 𝑐⦋(𝐹‘𝑐) / 𝑧⦌𝑆𝑒) ↔ ¬ ((𝐹‘𝑐) = (𝐹‘𝑒) ∧ 𝑐⦋(𝐹‘𝑐) / 𝑧⦌𝑆𝑒)) |
| 141 | 139, 140 | sylib 208 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) ∧ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) ∧ ∀𝑔 ∈ 𝑎 ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) ∧ 𝑐 ∈ 𝑎) → ¬ ((𝐹‘𝑐) = (𝐹‘𝑒) ∧ 𝑐⦋(𝐹‘𝑐) / 𝑧⦌𝑆𝑒)) |
| 142 | | ioran 511 |
. . . . . . . . . . . . . 14
⊢ (¬
((𝐹‘𝑐)𝑅(𝐹‘𝑒) ∨ ((𝐹‘𝑐) = (𝐹‘𝑒) ∧ 𝑐⦋(𝐹‘𝑐) / 𝑧⦌𝑆𝑒)) ↔ (¬ (𝐹‘𝑐)𝑅(𝐹‘𝑒) ∧ ¬ ((𝐹‘𝑐) = (𝐹‘𝑒) ∧ 𝑐⦋(𝐹‘𝑐) / 𝑧⦌𝑆𝑒))) |
| 143 | 116, 141,
142 | sylanbrc 698 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) ∧ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) ∧ ∀𝑔 ∈ 𝑎 ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) ∧ 𝑐 ∈ 𝑎) → ¬ ((𝐹‘𝑐)𝑅(𝐹‘𝑒) ∨ ((𝐹‘𝑐) = (𝐹‘𝑒) ∧ 𝑐⦋(𝐹‘𝑐) / 𝑧⦌𝑆𝑒))) |
| 144 | 66, 67 | fnwe2val 37619 |
. . . . . . . . . . . . 13
⊢ (𝑐𝑇𝑒 ↔ ((𝐹‘𝑐)𝑅(𝐹‘𝑒) ∨ ((𝐹‘𝑐) = (𝐹‘𝑒) ∧ 𝑐⦋(𝐹‘𝑐) / 𝑧⦌𝑆𝑒))) |
| 145 | 143, 144 | sylnibr 319 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) ∧ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) ∧ ∀𝑔 ∈ 𝑎 ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) ∧ 𝑐 ∈ 𝑎) → ¬ 𝑐𝑇𝑒) |
| 146 | 145 | ralrimiva 2966 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) ∧ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) ∧ ∀𝑔 ∈ 𝑎 ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) → ∀𝑐 ∈ 𝑎 ¬ 𝑐𝑇𝑒) |
| 147 | | breq2 4657 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑒 → (𝑐𝑇𝑏 ↔ 𝑐𝑇𝑒)) |
| 148 | 147 | notbid 308 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑒 → (¬ 𝑐𝑇𝑏 ↔ ¬ 𝑐𝑇𝑒)) |
| 149 | 148 | ralbidv 2986 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑒 → (∀𝑐 ∈ 𝑎 ¬ 𝑐𝑇𝑏 ↔ ∀𝑐 ∈ 𝑎 ¬ 𝑐𝑇𝑒)) |
| 150 | 149 | rspcev 3309 |
. . . . . . . . . . 11
⊢ ((𝑒 ∈ 𝑎 ∧ ∀𝑐 ∈ 𝑎 ¬ 𝑐𝑇𝑒) → ∃𝑏 ∈ 𝑎 ∀𝑐 ∈ 𝑎 ¬ 𝑐𝑇𝑏) |
| 151 | 104, 146,
150 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) ∧ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) ∧ ∀𝑔 ∈ 𝑎 ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒)) → ∃𝑏 ∈ 𝑎 ∀𝑐 ∈ 𝑎 ¬ 𝑐𝑇𝑏) |
| 152 | 151 | ex 450 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) ∧ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) → (∀𝑔 ∈ 𝑎 ((𝑔 ∈ 𝐴 ∧ (𝐹‘𝑔) = (𝐹‘𝑓)) → ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒) → ∃𝑏 ∈ 𝑎 ∀𝑐 ∈ 𝑎 ¬ 𝑐𝑇𝑏)) |
| 153 | 103, 152 | syl5bi 232 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) ∧ (𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓)))) → (∀𝑔 ∈ (𝑎 ∩ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒 → ∃𝑏 ∈ 𝑎 ∀𝑐 ∈ 𝑎 ¬ 𝑐𝑇𝑏)) |
| 154 | 153 | ex 450 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) → ((𝑒 ∈ 𝑎 ∧ (𝑒 ∈ 𝐴 ∧ (𝐹‘𝑒) = (𝐹‘𝑓))) → (∀𝑔 ∈ (𝑎 ∩ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒 → ∃𝑏 ∈ 𝑎 ∀𝑐 ∈ 𝑎 ¬ 𝑐𝑇𝑏))) |
| 155 | 93, 154 | syl5bi 232 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) → (𝑒 ∈ (𝑎 ∩ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) → (∀𝑔 ∈ (𝑎 ∩ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒 → ∃𝑏 ∈ 𝑎 ∀𝑐 ∈ 𝑎 ¬ 𝑐𝑇𝑏))) |
| 156 | 155 | rexlimdv 3030 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) → (∃𝑒 ∈ (𝑎 ∩ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)})∀𝑔 ∈ (𝑎 ∩ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑓)}) ¬ 𝑔⦋(𝐹‘𝑓) / 𝑧⦌𝑆𝑒 → ∃𝑏 ∈ 𝑎 ∀𝑐 ∈ 𝑎 ¬ 𝑐𝑇𝑏)) |
| 157 | 87, 156 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑎 ∧ ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓))) → ∃𝑏 ∈ 𝑎 ∀𝑐 ∈ 𝑎 ¬ 𝑐𝑇𝑏) |
| 158 | 157 | rexlimdvaa 3032 |
. . 3
⊢ (𝜑 → (∃𝑓 ∈ 𝑎 ∀𝑑 ∈ 𝑎 ¬ (𝐹‘𝑑)𝑅(𝐹‘𝑓) → ∃𝑏 ∈ 𝑎 ∀𝑐 ∈ 𝑎 ¬ 𝑐𝑇𝑏)) |
| 159 | 62, 158 | sylbid 230 |
. 2
⊢ (𝜑 → (∃𝑑 ∈ ((𝐹 ↾ 𝐴) “ 𝑎)∀𝑒 ∈ ((𝐹 ↾ 𝐴) “ 𝑎) ¬ 𝑒𝑅𝑑 → ∃𝑏 ∈ 𝑎 ∀𝑐 ∈ 𝑎 ¬ 𝑐𝑇𝑏)) |
| 160 | 27, 159 | mpd 15 |
1
⊢ (𝜑 → ∃𝑏 ∈ 𝑎 ∀𝑐 ∈ 𝑎 ¬ 𝑐𝑇𝑏) |