![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > acnnum | Structured version Visualization version GIF version |
Description: A set 𝑋 which has choice sequences on it of length 𝒫 𝑋 is well-orderable (and hence has choice sequences of every length). (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
acnnum | ⊢ (𝑋 ∈ AC 𝒫 𝑋 ↔ 𝑋 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 4850 | . . . . . . 7 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → 𝒫 𝑋 ∈ V) | |
2 | difss 3737 | . . . . . . 7 ⊢ (𝒫 𝑋 ∖ {∅}) ⊆ 𝒫 𝑋 | |
3 | ssdomg 8001 | . . . . . . 7 ⊢ (𝒫 𝑋 ∈ V → ((𝒫 𝑋 ∖ {∅}) ⊆ 𝒫 𝑋 → (𝒫 𝑋 ∖ {∅}) ≼ 𝒫 𝑋)) | |
4 | 1, 2, 3 | mpisyl 21 | . . . . . 6 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → (𝒫 𝑋 ∖ {∅}) ≼ 𝒫 𝑋) |
5 | acndom 8874 | . . . . . 6 ⊢ ((𝒫 𝑋 ∖ {∅}) ≼ 𝒫 𝑋 → (𝑋 ∈ AC 𝒫 𝑋 → 𝑋 ∈ AC (𝒫 𝑋 ∖ {∅}))) | |
6 | 4, 5 | mpcom 38 | . . . . 5 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → 𝑋 ∈ AC (𝒫 𝑋 ∖ {∅})) |
7 | eldifsn 4317 | . . . . . . 7 ⊢ (𝑥 ∈ (𝒫 𝑋 ∖ {∅}) ↔ (𝑥 ∈ 𝒫 𝑋 ∧ 𝑥 ≠ ∅)) | |
8 | elpwi 4168 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋) | |
9 | 8 | anim1i 592 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝒫 𝑋 ∧ 𝑥 ≠ ∅) → (𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ ∅)) |
10 | 7, 9 | sylbi 207 | . . . . . 6 ⊢ (𝑥 ∈ (𝒫 𝑋 ∖ {∅}) → (𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ ∅)) |
11 | 10 | rgen 2922 | . . . . 5 ⊢ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ ∅) |
12 | acni2 8869 | . . . . 5 ⊢ ((𝑋 ∈ AC (𝒫 𝑋 ∖ {∅}) ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑥 ⊆ 𝑋 ∧ 𝑥 ≠ ∅)) → ∃𝑓(𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥)) | |
13 | 6, 11, 12 | sylancl 694 | . . . 4 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → ∃𝑓(𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥)) |
14 | simpr 477 | . . . . . 6 ⊢ ((𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥) → ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥) | |
15 | 7 | imbi1i 339 | . . . . . . . 8 ⊢ ((𝑥 ∈ (𝒫 𝑋 ∖ {∅}) → (𝑓‘𝑥) ∈ 𝑥) ↔ ((𝑥 ∈ 𝒫 𝑋 ∧ 𝑥 ≠ ∅) → (𝑓‘𝑥) ∈ 𝑥)) |
16 | impexp 462 | . . . . . . . 8 ⊢ (((𝑥 ∈ 𝒫 𝑋 ∧ 𝑥 ≠ ∅) → (𝑓‘𝑥) ∈ 𝑥) ↔ (𝑥 ∈ 𝒫 𝑋 → (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) | |
17 | 15, 16 | bitri 264 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝒫 𝑋 ∖ {∅}) → (𝑓‘𝑥) ∈ 𝑥) ↔ (𝑥 ∈ 𝒫 𝑋 → (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
18 | 17 | ralbii2 2978 | . . . . . 6 ⊢ (∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥 ↔ ∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
19 | 14, 18 | sylib 208 | . . . . 5 ⊢ ((𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥) → ∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
20 | 19 | eximi 1762 | . . . 4 ⊢ (∃𝑓(𝑓:(𝒫 𝑋 ∖ {∅})⟶𝑋 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∖ {∅})(𝑓‘𝑥) ∈ 𝑥) → ∃𝑓∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
21 | 13, 20 | syl 17 | . . 3 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → ∃𝑓∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
22 | dfac8a 8853 | . . 3 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → (∃𝑓∀𝑥 ∈ 𝒫 𝑋(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) → 𝑋 ∈ dom card)) | |
23 | 21, 22 | mpd 15 | . 2 ⊢ (𝑋 ∈ AC 𝒫 𝑋 → 𝑋 ∈ dom card) |
24 | pwexg 4850 | . . 3 ⊢ (𝑋 ∈ dom card → 𝒫 𝑋 ∈ V) | |
25 | numacn 8872 | . . 3 ⊢ (𝒫 𝑋 ∈ V → (𝑋 ∈ dom card → 𝑋 ∈ AC 𝒫 𝑋)) | |
26 | 24, 25 | mpcom 38 | . 2 ⊢ (𝑋 ∈ dom card → 𝑋 ∈ AC 𝒫 𝑋) |
27 | 23, 26 | impbii 199 | 1 ⊢ (𝑋 ∈ AC 𝒫 𝑋 ↔ 𝑋 ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∃wex 1704 ∈ wcel 1990 ≠ wne 2794 ∀wral 2912 Vcvv 3200 ∖ cdif 3571 ⊆ wss 3574 ∅c0 3915 𝒫 cpw 4158 {csn 4177 class class class wbr 4653 dom cdm 5114 ⟶wf 5884 ‘cfv 5888 ≼ cdom 7953 cardccrd 8761 AC wacn 8764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-1o 7560 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-fin 7959 df-card 8765 df-acn 8768 |
This theorem is referenced by: dfac13 8964 |
Copyright terms: Public domain | W3C validator |