| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relbigcup | Structured version Visualization version GIF version | ||
| Description: The Bigcup relationship is a relationship. (Contributed by Scott Fenton, 11-Apr-2012.) |
| Ref | Expression |
|---|---|
| relbigcup | ⊢ Rel Bigcup |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5227 | . . 3 ⊢ Rel (V × V) | |
| 2 | reldif 5238 | . . 3 ⊢ (Rel (V × V) → Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))) |
| 4 | df-bigcup 31965 | . . 3 ⊢ Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))) | |
| 5 | 4 | releqi 5202 | . 2 ⊢ (Rel Bigcup ↔ Rel ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)))) |
| 6 | 3, 5 | mpbir 221 | 1 ⊢ Rel Bigcup |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3200 ∖ cdif 3571 △ csymdif 3843 E cep 5028 × cxp 5112 ran crn 5115 ∘ ccom 5118 Rel wrel 5119 ⊗ ctxp 31937 Bigcup cbigcup 31941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-opab 4713 df-xp 5120 df-rel 5121 df-bigcup 31965 |
| This theorem is referenced by: brbigcup 32005 dfbigcup2 32006 |
| Copyright terms: Public domain | W3C validator |