![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brbigcup | Structured version Visualization version GIF version |
Description: Binary relation over Bigcup . (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
brbigcup.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brbigcup | ⊢ (𝐴 Bigcup 𝐵 ↔ ∪ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relbigcup 32004 | . . 3 ⊢ Rel Bigcup | |
2 | 1 | brrelexi 5158 | . 2 ⊢ (𝐴 Bigcup 𝐵 → 𝐴 ∈ V) |
3 | brbigcup.1 | . . . 4 ⊢ 𝐵 ∈ V | |
4 | eleq1 2689 | . . . 4 ⊢ (∪ 𝐴 = 𝐵 → (∪ 𝐴 ∈ V ↔ 𝐵 ∈ V)) | |
5 | 3, 4 | mpbiri 248 | . . 3 ⊢ (∪ 𝐴 = 𝐵 → ∪ 𝐴 ∈ V) |
6 | uniexb 6973 | . . 3 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) | |
7 | 5, 6 | sylibr 224 | . 2 ⊢ (∪ 𝐴 = 𝐵 → 𝐴 ∈ V) |
8 | breq1 4656 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 Bigcup 𝐵 ↔ 𝐴 Bigcup 𝐵)) | |
9 | unieq 4444 | . . . 4 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
10 | 9 | eqeq1d 2624 | . . 3 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 = 𝐵 ↔ ∪ 𝐴 = 𝐵)) |
11 | vex 3203 | . . . . 5 ⊢ 𝑥 ∈ V | |
12 | df-bigcup 31965 | . . . . 5 ⊢ Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V))) | |
13 | brxp 5147 | . . . . . 6 ⊢ (𝑥(V × V)𝐵 ↔ (𝑥 ∈ V ∧ 𝐵 ∈ V)) | |
14 | 11, 3, 13 | mpbir2an 955 | . . . . 5 ⊢ 𝑥(V × V)𝐵 |
15 | epel 5032 | . . . . . . 7 ⊢ (𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧) | |
16 | 15 | rexbii 3041 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝑥 𝑦 E 𝑧 ↔ ∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧) |
17 | vex 3203 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
18 | 17, 11 | coep 31641 | . . . . . 6 ⊢ (𝑦( E ∘ E )𝑥 ↔ ∃𝑧 ∈ 𝑥 𝑦 E 𝑧) |
19 | eluni2 4440 | . . . . . 6 ⊢ (𝑦 ∈ ∪ 𝑥 ↔ ∃𝑧 ∈ 𝑥 𝑦 ∈ 𝑧) | |
20 | 16, 18, 19 | 3bitr4ri 293 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ↔ 𝑦( E ∘ E )𝑥) |
21 | 11, 3, 12, 14, 20 | brtxpsd3 32003 | . . . 4 ⊢ (𝑥 Bigcup 𝐵 ↔ 𝐵 = ∪ 𝑥) |
22 | eqcom 2629 | . . . 4 ⊢ (𝐵 = ∪ 𝑥 ↔ ∪ 𝑥 = 𝐵) | |
23 | 21, 22 | bitri 264 | . . 3 ⊢ (𝑥 Bigcup 𝐵 ↔ ∪ 𝑥 = 𝐵) |
24 | 8, 10, 23 | vtoclbg 3267 | . 2 ⊢ (𝐴 ∈ V → (𝐴 Bigcup 𝐵 ↔ ∪ 𝐴 = 𝐵)) |
25 | 2, 7, 24 | pm5.21nii 368 | 1 ⊢ (𝐴 Bigcup 𝐵 ↔ ∪ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 Vcvv 3200 ∪ cuni 4436 class class class wbr 4653 E cep 5028 × cxp 5112 ∘ ccom 5118 Bigcup cbigcup 31941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-symdif 3844 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-eprel 5029 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fo 5894 df-fv 5896 df-1st 7168 df-2nd 7169 df-txp 31961 df-bigcup 31965 |
This theorem is referenced by: dfbigcup2 32006 fvbigcup 32009 ellimits 32017 brapply 32045 dfrdg4 32058 |
Copyright terms: Public domain | W3C validator |