Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relbigcup Structured version   Visualization version   Unicode version

Theorem relbigcup 32004
Description: The  Bigcup relationship is a relationship. (Contributed by Scott Fenton, 11-Apr-2012.)
Assertion
Ref Expression
relbigcup  |-  Rel  Bigcup

Proof of Theorem relbigcup
StepHypRef Expression
1 relxp 5227 . . 3  |-  Rel  ( _V  X.  _V )
2 reldif 5238 . . 3  |-  ( Rel  ( _V  X.  _V )  ->  Rel  ( ( _V  X.  _V )  \  ran  ( ( _V  (x)  _E  )  /_\  ( (  _E  o.  _E  )  (x)  _V ) ) ) )
31, 2ax-mp 5 . 2  |-  Rel  (
( _V  X.  _V )  \  ran  ( ( _V  (x)  _E  )  /_\  ( (  _E  o.  _E  )  (x)  _V )
) )
4 df-bigcup 31965 . . 3  |-  Bigcup  =  ( ( _V  X.  _V )  \  ran  ( ( _V  (x)  _E  )  /_\  ( (  _E  o.  _E  )  (x)  _V )
) )
54releqi 5202 . 2  |-  ( Rel  Bigcup  <->  Rel  ( ( _V  X.  _V )  \  ran  (
( _V  (x)  _E  )  /_\  ( (  _E  o.  _E  )  (x)  _V ) ) ) )
63, 5mpbir 221 1  |-  Rel  Bigcup
Colors of variables: wff setvar class
Syntax hints:   _Vcvv 3200    \ cdif 3571    /_\ csymdif 3843    _E cep 5028    X. cxp 5112   ran crn 5115    o. ccom 5118   Rel wrel 5119    (x) ctxp 31937   Bigcupcbigcup 31941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-opab 4713  df-xp 5120  df-rel 5121  df-bigcup 31965
This theorem is referenced by:  brbigcup  32005  dfbigcup2  32006
  Copyright terms: Public domain W3C validator