MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmevls1 Structured version   Visualization version   GIF version

Theorem reldmevls1 19682
Description: Well-behaved binary operation property of evalSub1. (Contributed by AV, 7-Sep-2019.)
Assertion
Ref Expression
reldmevls1 Rel dom evalSub1

Proof of Theorem reldmevls1
Dummy variables 𝑟 𝑏 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-evls1 19680 . 2 evalSub1 = (𝑠 ∈ V, 𝑟 ∈ 𝒫 (Base‘𝑠) ↦ (Base‘𝑠) / 𝑏((𝑥 ∈ (𝑏𝑚 (𝑏𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1𝑜 × {𝑦})))) ∘ ((1𝑜 evalSub 𝑠)‘𝑟)))
21reldmmpt2 6771 1 Rel dom evalSub1
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3200  csb 3533  𝒫 cpw 4158  {csn 4177  cmpt 4729   × cxp 5112  dom cdm 5114  ccom 5118  Rel wrel 5119  cfv 5888  (class class class)co 6650  1𝑜c1o 7553  𝑚 cmap 7857  Basecbs 15857   evalSub ces 19504   evalSub1 ces1 19678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-dm 5124  df-oprab 6654  df-mpt2 6655  df-evls1 19680
This theorem is referenced by:  evl1fval1  19695
  Copyright terms: Public domain W3C validator