MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1frcl Structured version   Visualization version   GIF version

Theorem ply1frcl 19683
Description: Reverse closure for the set of univariate polynomial functions. (Contributed by AV, 9-Sep-2019.)
Hypothesis
Ref Expression
ply1frcl.q 𝑄 = ran (𝑆 evalSub1 𝑅)
Assertion
Ref Expression
ply1frcl (𝑋𝑄 → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆)))

Proof of Theorem ply1frcl
Dummy variables 𝑟 𝑏 𝑠 𝑥 𝑦 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ne0i 3921 . . 3 (𝑋 ∈ ran (𝑆 evalSub1 𝑅) → ran (𝑆 evalSub1 𝑅) ≠ ∅)
2 ply1frcl.q . . 3 𝑄 = ran (𝑆 evalSub1 𝑅)
31, 2eleq2s 2719 . 2 (𝑋𝑄 → ran (𝑆 evalSub1 𝑅) ≠ ∅)
4 rneq 5351 . . . 4 ((𝑆 evalSub1 𝑅) = ∅ → ran (𝑆 evalSub1 𝑅) = ran ∅)
5 rn0 5377 . . . 4 ran ∅ = ∅
64, 5syl6eq 2672 . . 3 ((𝑆 evalSub1 𝑅) = ∅ → ran (𝑆 evalSub1 𝑅) = ∅)
76necon3i 2826 . 2 (ran (𝑆 evalSub1 𝑅) ≠ ∅ → (𝑆 evalSub1 𝑅) ≠ ∅)
8 n0 3931 . . 3 ((𝑆 evalSub1 𝑅) ≠ ∅ ↔ ∃𝑒 𝑒 ∈ (𝑆 evalSub1 𝑅))
9 df-evls1 19680 . . . . . . 7 evalSub1 = (𝑠 ∈ V, 𝑟 ∈ 𝒫 (Base‘𝑠) ↦ (Base‘𝑠) / 𝑏((𝑥 ∈ (𝑏𝑚 (𝑏𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1𝑜 × {𝑦})))) ∘ ((1𝑜 evalSub 𝑠)‘𝑟)))
109dmmpt2ssx 7235 . . . . . 6 dom evalSub1 𝑠 ∈ V ({𝑠} × 𝒫 (Base‘𝑠))
11 elfvdm 6220 . . . . . . 7 (𝑒 ∈ ( evalSub1 ‘⟨𝑆, 𝑅⟩) → ⟨𝑆, 𝑅⟩ ∈ dom evalSub1 )
12 df-ov 6653 . . . . . . 7 (𝑆 evalSub1 𝑅) = ( evalSub1 ‘⟨𝑆, 𝑅⟩)
1311, 12eleq2s 2719 . . . . . 6 (𝑒 ∈ (𝑆 evalSub1 𝑅) → ⟨𝑆, 𝑅⟩ ∈ dom evalSub1 )
1410, 13sseldi 3601 . . . . 5 (𝑒 ∈ (𝑆 evalSub1 𝑅) → ⟨𝑆, 𝑅⟩ ∈ 𝑠 ∈ V ({𝑠} × 𝒫 (Base‘𝑠)))
15 fveq2 6191 . . . . . . 7 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
1615pweqd 4163 . . . . . 6 (𝑠 = 𝑆 → 𝒫 (Base‘𝑠) = 𝒫 (Base‘𝑆))
1716opeliunxp2 5260 . . . . 5 (⟨𝑆, 𝑅⟩ ∈ 𝑠 ∈ V ({𝑠} × 𝒫 (Base‘𝑠)) ↔ (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆)))
1814, 17sylib 208 . . . 4 (𝑒 ∈ (𝑆 evalSub1 𝑅) → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆)))
1918exlimiv 1858 . . 3 (∃𝑒 𝑒 ∈ (𝑆 evalSub1 𝑅) → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆)))
208, 19sylbi 207 . 2 ((𝑆 evalSub1 𝑅) ≠ ∅ → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆)))
213, 7, 203syl 18 1 (𝑋𝑄 → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  wne 2794  Vcvv 3200  csb 3533  c0 3915  𝒫 cpw 4158  {csn 4177  cop 4183   ciun 4520  cmpt 4729   × cxp 5112  dom cdm 5114  ran crn 5115  ccom 5118  cfv 5888  (class class class)co 6650  1𝑜c1o 7553  𝑚 cmap 7857  Basecbs 15857   evalSub ces 19504   evalSub1 ces1 19678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-evls1 19680
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator