![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relwlk | Structured version Visualization version GIF version |
Description: The set (Walks‘𝐺) of all walks on 𝐺 is a set of pairs by our definition of a walk, and so is a relation. (Contributed by Alexander van der Vekens, 30-Jun-2018.) (Revised by AV, 19-Feb-2021.) |
Ref | Expression |
---|---|
relwlk | ⊢ Rel (Walks‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wlks 26495 | . 2 ⊢ Walks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(#‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(#‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘))))}) | |
2 | 1 | relmptopab 6883 | 1 ⊢ Rel (Walks‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: if-wif 1012 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∀wral 2912 Vcvv 3200 ⊆ wss 3574 {csn 4177 {cpr 4179 dom cdm 5114 Rel wrel 5119 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 0cc0 9936 1c1 9937 + caddc 9939 ...cfz 12326 ..^cfzo 12465 #chash 13117 Word cword 13291 Vtxcvtx 25874 iEdgciedg 25875 Walkscwlks 26492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 df-wlks 26495 |
This theorem is referenced by: wlkop 26523 istrl 26593 isclwlk 26669 |
Copyright terms: Public domain | W3C validator |