MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resixp Structured version   Visualization version   GIF version

Theorem resixp 7943
Description: Restriction of an element of an infinite Cartesian product. (Contributed by FL, 7-Nov-2011.) (Proof shortened by Mario Carneiro, 31-May-2014.)
Assertion
Ref Expression
resixp ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → (𝐹𝐵) ∈ X𝑥𝐵 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem resixp
StepHypRef Expression
1 resexg 5442 . . 3 (𝐹X𝑥𝐴 𝐶 → (𝐹𝐵) ∈ V)
21adantl 482 . 2 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → (𝐹𝐵) ∈ V)
3 simpr 477 . . . . 5 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → 𝐹X𝑥𝐴 𝐶)
4 elixp2 7912 . . . . 5 (𝐹X𝑥𝐴 𝐶 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐶))
53, 4sylib 208 . . . 4 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐶))
65simp2d 1074 . . 3 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → 𝐹 Fn 𝐴)
7 simpl 473 . . 3 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → 𝐵𝐴)
8 fnssres 6004 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) Fn 𝐵)
96, 7, 8syl2anc 693 . 2 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → (𝐹𝐵) Fn 𝐵)
105simp3d 1075 . . . 4 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐶)
11 ssralv 3666 . . . 4 (𝐵𝐴 → (∀𝑥𝐴 (𝐹𝑥) ∈ 𝐶 → ∀𝑥𝐵 (𝐹𝑥) ∈ 𝐶))
127, 10, 11sylc 65 . . 3 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → ∀𝑥𝐵 (𝐹𝑥) ∈ 𝐶)
13 fvres 6207 . . . . 5 (𝑥𝐵 → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
1413eleq1d 2686 . . . 4 (𝑥𝐵 → (((𝐹𝐵)‘𝑥) ∈ 𝐶 ↔ (𝐹𝑥) ∈ 𝐶))
1514ralbiia 2979 . . 3 (∀𝑥𝐵 ((𝐹𝐵)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐵 (𝐹𝑥) ∈ 𝐶)
1612, 15sylibr 224 . 2 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → ∀𝑥𝐵 ((𝐹𝐵)‘𝑥) ∈ 𝐶)
17 elixp2 7912 . 2 ((𝐹𝐵) ∈ X𝑥𝐵 𝐶 ↔ ((𝐹𝐵) ∈ V ∧ (𝐹𝐵) Fn 𝐵 ∧ ∀𝑥𝐵 ((𝐹𝐵)‘𝑥) ∈ 𝐶))
182, 9, 16, 17syl3anbrc 1246 1 ((𝐵𝐴𝐹X𝑥𝐴 𝐶) → (𝐹𝐵) ∈ X𝑥𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037  wcel 1990  wral 2912  Vcvv 3200  wss 3574  cres 5116   Fn wfn 5883  cfv 5888  Xcixp 7908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-ixp 7909
This theorem is referenced by:  resixpfo  7946  ixpfi2  8264  ptrescn  21442  ptuncnv  21610  ptcmplem2  21857
  Copyright terms: Public domain W3C validator