MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpfi2 Structured version   Visualization version   GIF version

Theorem ixpfi2 8264
Description: A Cartesian product of finite sets such that all but finitely many are singletons is finite. (Note that 𝐵(𝑥) and 𝐷(𝑥) are both possibly dependent on 𝑥.) (Contributed by Mario Carneiro, 25-Jan-2015.)
Hypotheses
Ref Expression
ixpfi2.1 (𝜑𝐶 ∈ Fin)
ixpfi2.2 ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)
ixpfi2.3 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐵 ⊆ {𝐷})
Assertion
Ref Expression
ixpfi2 (𝜑X𝑥𝐴 𝐵 ∈ Fin)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)

Proof of Theorem ixpfi2
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ixpfi2.1 . . . 4 (𝜑𝐶 ∈ Fin)
2 inss2 3834 . . . 4 (𝐴𝐶) ⊆ 𝐶
3 ssfi 8180 . . . 4 ((𝐶 ∈ Fin ∧ (𝐴𝐶) ⊆ 𝐶) → (𝐴𝐶) ∈ Fin)
41, 2, 3sylancl 694 . . 3 (𝜑 → (𝐴𝐶) ∈ Fin)
5 inss1 3833 . . . 4 (𝐴𝐶) ⊆ 𝐴
6 ixpfi2.2 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)
76ralrimiva 2966 . . . 4 (𝜑 → ∀𝑥𝐴 𝐵 ∈ Fin)
8 ssralv 3666 . . . 4 ((𝐴𝐶) ⊆ 𝐴 → (∀𝑥𝐴 𝐵 ∈ Fin → ∀𝑥 ∈ (𝐴𝐶)𝐵 ∈ Fin))
95, 7, 8mpsyl 68 . . 3 (𝜑 → ∀𝑥 ∈ (𝐴𝐶)𝐵 ∈ Fin)
10 ixpfi 8263 . . 3 (((𝐴𝐶) ∈ Fin ∧ ∀𝑥 ∈ (𝐴𝐶)𝐵 ∈ Fin) → X𝑥 ∈ (𝐴𝐶)𝐵 ∈ Fin)
114, 9, 10syl2anc 693 . 2 (𝜑X𝑥 ∈ (𝐴𝐶)𝐵 ∈ Fin)
12 resixp 7943 . . . . 5 (((𝐴𝐶) ⊆ 𝐴𝑓X𝑥𝐴 𝐵) → (𝑓 ↾ (𝐴𝐶)) ∈ X𝑥 ∈ (𝐴𝐶)𝐵)
135, 12mpan 706 . . . 4 (𝑓X𝑥𝐴 𝐵 → (𝑓 ↾ (𝐴𝐶)) ∈ X𝑥 ∈ (𝐴𝐶)𝐵)
1413a1i 11 . . 3 (𝜑 → (𝑓X𝑥𝐴 𝐵 → (𝑓 ↾ (𝐴𝐶)) ∈ X𝑥 ∈ (𝐴𝐶)𝐵))
15 simprl 794 . . . . . . . . . 10 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → 𝑓X𝑥𝐴 𝐵)
16 vex 3203 . . . . . . . . . . 11 𝑓 ∈ V
1716elixp 7915 . . . . . . . . . 10 (𝑓X𝑥𝐴 𝐵 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
1815, 17sylib 208 . . . . . . . . 9 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
1918simprd 479 . . . . . . . 8 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)
20 simprr 796 . . . . . . . . . 10 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → 𝑔X𝑥𝐴 𝐵)
21 vex 3203 . . . . . . . . . . 11 𝑔 ∈ V
2221elixp 7915 . . . . . . . . . 10 (𝑔X𝑥𝐴 𝐵 ↔ (𝑔 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵))
2320, 22sylib 208 . . . . . . . . 9 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → (𝑔 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵))
2423simprd 479 . . . . . . . 8 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵)
25 r19.26 3064 . . . . . . . . 9 (∀𝑥𝐴 ((𝑓𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵) ↔ (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵))
26 difss 3737 . . . . . . . . . . 11 (𝐴𝐶) ⊆ 𝐴
27 ssralv 3666 . . . . . . . . . . 11 ((𝐴𝐶) ⊆ 𝐴 → (∀𝑥𝐴 ((𝑓𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝐴𝐶)((𝑓𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵)))
2826, 27ax-mp 5 . . . . . . . . . 10 (∀𝑥𝐴 ((𝑓𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝐴𝐶)((𝑓𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵))
29 ixpfi2.3 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐵 ⊆ {𝐷})
3029sseld 3602 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴𝐶)) → ((𝑓𝑥) ∈ 𝐵 → (𝑓𝑥) ∈ {𝐷}))
31 elsni 4194 . . . . . . . . . . . . . . 15 ((𝑓𝑥) ∈ {𝐷} → (𝑓𝑥) = 𝐷)
3230, 31syl6 35 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴𝐶)) → ((𝑓𝑥) ∈ 𝐵 → (𝑓𝑥) = 𝐷))
3329sseld 3602 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴𝐶)) → ((𝑔𝑥) ∈ 𝐵 → (𝑔𝑥) ∈ {𝐷}))
34 elsni 4194 . . . . . . . . . . . . . . 15 ((𝑔𝑥) ∈ {𝐷} → (𝑔𝑥) = 𝐷)
3533, 34syl6 35 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴𝐶)) → ((𝑔𝑥) ∈ 𝐵 → (𝑔𝑥) = 𝐷))
3632, 35anim12d 586 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴𝐶)) → (((𝑓𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵) → ((𝑓𝑥) = 𝐷 ∧ (𝑔𝑥) = 𝐷)))
37 eqtr3 2643 . . . . . . . . . . . . 13 (((𝑓𝑥) = 𝐷 ∧ (𝑔𝑥) = 𝐷) → (𝑓𝑥) = (𝑔𝑥))
3836, 37syl6 35 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴𝐶)) → (((𝑓𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵) → (𝑓𝑥) = (𝑔𝑥)))
3938ralimdva 2962 . . . . . . . . . . 11 (𝜑 → (∀𝑥 ∈ (𝐴𝐶)((𝑓𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥)))
4039adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → (∀𝑥 ∈ (𝐴𝐶)((𝑓𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥)))
4128, 40syl5 34 . . . . . . . . 9 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → (∀𝑥𝐴 ((𝑓𝑥) ∈ 𝐵 ∧ (𝑔𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥)))
4225, 41syl5bir 233 . . . . . . . 8 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → ((∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥)))
4319, 24, 42mp2and 715 . . . . . . 7 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → ∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥))
4443biantrud 528 . . . . . 6 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → (∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥) ↔ (∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥) ∧ ∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥))))
45 fvres 6207 . . . . . . . 8 (𝑥 ∈ (𝐴𝐶) → ((𝑓 ↾ (𝐴𝐶))‘𝑥) = (𝑓𝑥))
46 fvres 6207 . . . . . . . 8 (𝑥 ∈ (𝐴𝐶) → ((𝑔 ↾ (𝐴𝐶))‘𝑥) = (𝑔𝑥))
4745, 46eqeq12d 2637 . . . . . . 7 (𝑥 ∈ (𝐴𝐶) → (((𝑓 ↾ (𝐴𝐶))‘𝑥) = ((𝑔 ↾ (𝐴𝐶))‘𝑥) ↔ (𝑓𝑥) = (𝑔𝑥)))
4847ralbiia 2979 . . . . . 6 (∀𝑥 ∈ (𝐴𝐶)((𝑓 ↾ (𝐴𝐶))‘𝑥) = ((𝑔 ↾ (𝐴𝐶))‘𝑥) ↔ ∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥))
49 inundif 4046 . . . . . . . 8 ((𝐴𝐶) ∪ (𝐴𝐶)) = 𝐴
5049raleqi 3142 . . . . . . 7 (∀𝑥 ∈ ((𝐴𝐶) ∪ (𝐴𝐶))(𝑓𝑥) = (𝑔𝑥) ↔ ∀𝑥𝐴 (𝑓𝑥) = (𝑔𝑥))
51 ralunb 3794 . . . . . . 7 (∀𝑥 ∈ ((𝐴𝐶) ∪ (𝐴𝐶))(𝑓𝑥) = (𝑔𝑥) ↔ (∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥) ∧ ∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥)))
5250, 51bitr3i 266 . . . . . 6 (∀𝑥𝐴 (𝑓𝑥) = (𝑔𝑥) ↔ (∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥) ∧ ∀𝑥 ∈ (𝐴𝐶)(𝑓𝑥) = (𝑔𝑥)))
5344, 48, 523bitr4g 303 . . . . 5 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → (∀𝑥 ∈ (𝐴𝐶)((𝑓 ↾ (𝐴𝐶))‘𝑥) = ((𝑔 ↾ (𝐴𝐶))‘𝑥) ↔ ∀𝑥𝐴 (𝑓𝑥) = (𝑔𝑥)))
5418simpld 475 . . . . . . 7 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → 𝑓 Fn 𝐴)
55 fnssres 6004 . . . . . . 7 ((𝑓 Fn 𝐴 ∧ (𝐴𝐶) ⊆ 𝐴) → (𝑓 ↾ (𝐴𝐶)) Fn (𝐴𝐶))
5654, 5, 55sylancl 694 . . . . . 6 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → (𝑓 ↾ (𝐴𝐶)) Fn (𝐴𝐶))
5723simpld 475 . . . . . . 7 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → 𝑔 Fn 𝐴)
58 fnssres 6004 . . . . . . 7 ((𝑔 Fn 𝐴 ∧ (𝐴𝐶) ⊆ 𝐴) → (𝑔 ↾ (𝐴𝐶)) Fn (𝐴𝐶))
5957, 5, 58sylancl 694 . . . . . 6 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → (𝑔 ↾ (𝐴𝐶)) Fn (𝐴𝐶))
60 eqfnfv 6311 . . . . . 6 (((𝑓 ↾ (𝐴𝐶)) Fn (𝐴𝐶) ∧ (𝑔 ↾ (𝐴𝐶)) Fn (𝐴𝐶)) → ((𝑓 ↾ (𝐴𝐶)) = (𝑔 ↾ (𝐴𝐶)) ↔ ∀𝑥 ∈ (𝐴𝐶)((𝑓 ↾ (𝐴𝐶))‘𝑥) = ((𝑔 ↾ (𝐴𝐶))‘𝑥)))
6156, 59, 60syl2anc 693 . . . . 5 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → ((𝑓 ↾ (𝐴𝐶)) = (𝑔 ↾ (𝐴𝐶)) ↔ ∀𝑥 ∈ (𝐴𝐶)((𝑓 ↾ (𝐴𝐶))‘𝑥) = ((𝑔 ↾ (𝐴𝐶))‘𝑥)))
62 eqfnfv 6311 . . . . . 6 ((𝑓 Fn 𝐴𝑔 Fn 𝐴) → (𝑓 = 𝑔 ↔ ∀𝑥𝐴 (𝑓𝑥) = (𝑔𝑥)))
6354, 57, 62syl2anc 693 . . . . 5 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → (𝑓 = 𝑔 ↔ ∀𝑥𝐴 (𝑓𝑥) = (𝑔𝑥)))
6453, 61, 633bitr4d 300 . . . 4 ((𝜑 ∧ (𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵)) → ((𝑓 ↾ (𝐴𝐶)) = (𝑔 ↾ (𝐴𝐶)) ↔ 𝑓 = 𝑔))
6564ex 450 . . 3 (𝜑 → ((𝑓X𝑥𝐴 𝐵𝑔X𝑥𝐴 𝐵) → ((𝑓 ↾ (𝐴𝐶)) = (𝑔 ↾ (𝐴𝐶)) ↔ 𝑓 = 𝑔)))
6614, 65dom2lem 7995 . 2 (𝜑 → (𝑓X𝑥𝐴 𝐵 ↦ (𝑓 ↾ (𝐴𝐶))):X𝑥𝐴 𝐵1-1X𝑥 ∈ (𝐴𝐶)𝐵)
67 f1fi 8253 . 2 ((X𝑥 ∈ (𝐴𝐶)𝐵 ∈ Fin ∧ (𝑓X𝑥𝐴 𝐵 ↦ (𝑓 ↾ (𝐴𝐶))):X𝑥𝐴 𝐵1-1X𝑥 ∈ (𝐴𝐶)𝐵) → X𝑥𝐴 𝐵 ∈ Fin)
6811, 66, 67syl2anc 693 1 (𝜑X𝑥𝐴 𝐵 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  cdif 3571  cun 3572  cin 3573  wss 3574  {csn 4177  cmpt 4729  cres 5116   Fn wfn 5883  1-1wf1 5885  cfv 5888  Xcixp 7908  Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959
This theorem is referenced by:  psrbaglefi  19372  eulerpartlemb  30430
  Copyright terms: Public domain W3C validator