![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > restidsing | Structured version Visualization version GIF version |
Description: Restriction of the identity to a singleton. (Contributed by FL, 2-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) |
Ref | Expression |
---|---|
restidsing | ⊢ ( I ↾ {𝐴}) = ({𝐴} × {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 5426 | . 2 ⊢ Rel ( I ↾ {𝐴}) | |
2 | relxp 5227 | . 2 ⊢ Rel ({𝐴} × {𝐴}) | |
3 | velsn 4193 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
4 | velsn 4193 | . . . . 5 ⊢ (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴) | |
5 | 3, 4 | anbi12i 733 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) ↔ (𝑥 = 𝐴 ∧ 𝑦 = 𝐴)) |
6 | vex 3203 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
7 | 6 | ideq 5274 | . . . . . 6 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
8 | 7, 3 | anbi12i 733 | . . . . 5 ⊢ ((𝑥 I 𝑦 ∧ 𝑥 ∈ {𝐴}) ↔ (𝑥 = 𝑦 ∧ 𝑥 = 𝐴)) |
9 | ancom 466 | . . . . 5 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 = 𝐴) ↔ (𝑥 = 𝐴 ∧ 𝑥 = 𝑦)) | |
10 | eqeq1 2626 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝑦 ↔ 𝐴 = 𝑦)) | |
11 | eqcom 2629 | . . . . . . 7 ⊢ (𝐴 = 𝑦 ↔ 𝑦 = 𝐴) | |
12 | 10, 11 | syl6bb 276 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑦 = 𝐴)) |
13 | 12 | pm5.32i 669 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑥 = 𝑦) ↔ (𝑥 = 𝐴 ∧ 𝑦 = 𝐴)) |
14 | 8, 9, 13 | 3bitri 286 | . . . 4 ⊢ ((𝑥 I 𝑦 ∧ 𝑥 ∈ {𝐴}) ↔ (𝑥 = 𝐴 ∧ 𝑦 = 𝐴)) |
15 | df-br 4654 | . . . . 5 ⊢ (𝑥 I 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ I ) | |
16 | 15 | anbi1i 731 | . . . 4 ⊢ ((𝑥 I 𝑦 ∧ 𝑥 ∈ {𝐴}) ↔ (〈𝑥, 𝑦〉 ∈ I ∧ 𝑥 ∈ {𝐴})) |
17 | 5, 14, 16 | 3bitr2ri 289 | . . 3 ⊢ ((〈𝑥, 𝑦〉 ∈ I ∧ 𝑥 ∈ {𝐴}) ↔ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) |
18 | 6 | opelres 5401 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ( I ↾ {𝐴}) ↔ (〈𝑥, 𝑦〉 ∈ I ∧ 𝑥 ∈ {𝐴})) |
19 | opelxp 5146 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ({𝐴} × {𝐴}) ↔ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴})) | |
20 | 17, 18, 19 | 3bitr4i 292 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ( I ↾ {𝐴}) ↔ 〈𝑥, 𝑦〉 ∈ ({𝐴} × {𝐴})) |
21 | 1, 2, 20 | eqrelriiv 5214 | 1 ⊢ ( I ↾ {𝐴}) = ({𝐴} × {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 384 = wceq 1483 ∈ wcel 1990 {csn 4177 〈cop 4183 class class class wbr 4653 I cid 5023 × cxp 5112 ↾ cres 5116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-res 5126 |
This theorem is referenced by: residpr 6409 grp1inv 17523 psgnsn 17940 m1detdiag 20403 |
Copyright terms: Public domain | W3C validator |