MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restidsing Structured version   Visualization version   GIF version

Theorem restidsing 5458
Description: Restriction of the identity to a singleton. (Contributed by FL, 2-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.)
Assertion
Ref Expression
restidsing ( I ↾ {𝐴}) = ({𝐴} × {𝐴})

Proof of Theorem restidsing
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5426 . 2 Rel ( I ↾ {𝐴})
2 relxp 5227 . 2 Rel ({𝐴} × {𝐴})
3 velsn 4193 . . . . 5 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
4 velsn 4193 . . . . 5 (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴)
53, 4anbi12i 733 . . . 4 ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) ↔ (𝑥 = 𝐴𝑦 = 𝐴))
6 vex 3203 . . . . . . 7 𝑦 ∈ V
76ideq 5274 . . . . . 6 (𝑥 I 𝑦𝑥 = 𝑦)
87, 3anbi12i 733 . . . . 5 ((𝑥 I 𝑦𝑥 ∈ {𝐴}) ↔ (𝑥 = 𝑦𝑥 = 𝐴))
9 ancom 466 . . . . 5 ((𝑥 = 𝑦𝑥 = 𝐴) ↔ (𝑥 = 𝐴𝑥 = 𝑦))
10 eqeq1 2626 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 = 𝑦𝐴 = 𝑦))
11 eqcom 2629 . . . . . . 7 (𝐴 = 𝑦𝑦 = 𝐴)
1210, 11syl6bb 276 . . . . . 6 (𝑥 = 𝐴 → (𝑥 = 𝑦𝑦 = 𝐴))
1312pm5.32i 669 . . . . 5 ((𝑥 = 𝐴𝑥 = 𝑦) ↔ (𝑥 = 𝐴𝑦 = 𝐴))
148, 9, 133bitri 286 . . . 4 ((𝑥 I 𝑦𝑥 ∈ {𝐴}) ↔ (𝑥 = 𝐴𝑦 = 𝐴))
15 df-br 4654 . . . . 5 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
1615anbi1i 731 . . . 4 ((𝑥 I 𝑦𝑥 ∈ {𝐴}) ↔ (⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥 ∈ {𝐴}))
175, 14, 163bitr2ri 289 . . 3 ((⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥 ∈ {𝐴}) ↔ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}))
186opelres 5401 . . 3 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ {𝐴}) ↔ (⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥 ∈ {𝐴}))
19 opelxp 5146 . . 3 (⟨𝑥, 𝑦⟩ ∈ ({𝐴} × {𝐴}) ↔ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}))
2017, 18, 193bitr4i 292 . 2 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ {𝐴}) ↔ ⟨𝑥, 𝑦⟩ ∈ ({𝐴} × {𝐴}))
211, 2, 20eqrelriiv 5214 1 ( I ↾ {𝐴}) = ({𝐴} × {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wcel 1990  {csn 4177  cop 4183   class class class wbr 4653   I cid 5023   × cxp 5112  cres 5116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-res 5126
This theorem is referenced by:  residpr  6409  grp1inv  17523  psgnsn  17940  m1detdiag  20403
  Copyright terms: Public domain W3C validator