| Step | Hyp | Ref
| Expression |
| 1 | | mdetdiag.d |
. . . 4
⊢ 𝐷 = (𝑁 maDet 𝑅) |
| 2 | | mdetdiag.a |
. . . 4
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 3 | | mdetdiag.b |
. . . 4
⊢ 𝐵 = (Base‘𝐴) |
| 4 | | eqid 2622 |
. . . 4
⊢
(Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁)) |
| 5 | | eqid 2622 |
. . . 4
⊢
(ℤRHom‘𝑅) = (ℤRHom‘𝑅) |
| 6 | | eqid 2622 |
. . . 4
⊢
(pmSgn‘𝑁) =
(pmSgn‘𝑁) |
| 7 | | eqid 2622 |
. . . 4
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 8 | | eqid 2622 |
. . . 4
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | mdetleib 20393 |
. . 3
⊢ (𝑀 ∈ 𝐵 → (𝐷‘𝑀) = (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))))) |
| 10 | 9 | 3ad2ant3 1084 |
. 2
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐷‘𝑀) = (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))))) |
| 11 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑁 = {𝐼} → (SymGrp‘𝑁) = (SymGrp‘{𝐼})) |
| 12 | 11 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝑁 = {𝐼} → (Base‘(SymGrp‘𝑁)) =
(Base‘(SymGrp‘{𝐼}))) |
| 13 | 12 | adantr 481 |
. . . . . . 7
⊢ ((𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) → (Base‘(SymGrp‘𝑁)) =
(Base‘(SymGrp‘{𝐼}))) |
| 14 | 13 | 3ad2ant2 1083 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (Base‘(SymGrp‘𝑁)) =
(Base‘(SymGrp‘{𝐼}))) |
| 15 | | simp2r 1088 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 𝐼 ∈ 𝑉) |
| 16 | | eqid 2622 |
. . . . . . . 8
⊢
(SymGrp‘{𝐼}) =
(SymGrp‘{𝐼}) |
| 17 | | eqid 2622 |
. . . . . . . 8
⊢
(Base‘(SymGrp‘{𝐼})) = (Base‘(SymGrp‘{𝐼})) |
| 18 | | eqid 2622 |
. . . . . . . 8
⊢ {𝐼} = {𝐼} |
| 19 | 16, 17, 18 | symg1bas 17816 |
. . . . . . 7
⊢ (𝐼 ∈ 𝑉 → (Base‘(SymGrp‘{𝐼})) = {{〈𝐼, 𝐼〉}}) |
| 20 | 15, 19 | syl 17 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (Base‘(SymGrp‘{𝐼})) = {{〈𝐼, 𝐼〉}}) |
| 21 | 14, 20 | eqtrd 2656 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (Base‘(SymGrp‘𝑁)) = {{〈𝐼, 𝐼〉}}) |
| 22 | 21 | mpteq1d 4738 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦
((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))) = (𝑝 ∈ {{〈𝐼, 𝐼〉}} ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥)))))) |
| 23 | | snex 4908 |
. . . . . 6
⊢
{〈𝐼, 𝐼〉} ∈
V |
| 24 | 23 | a1i 11 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → {〈𝐼, 𝐼〉} ∈ V) |
| 25 | | ovex 6678 |
. . . . 5
⊢
((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{〈𝐼, 𝐼〉})(.r‘𝑅)((mulGrp‘𝑅) Σg
(𝑥 ∈ 𝑁 ↦ (({〈𝐼, 𝐼〉}‘𝑥)𝑀𝑥)))) ∈ V |
| 26 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑝 = {〈𝐼, 𝐼〉} → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝) = (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{〈𝐼, 𝐼〉})) |
| 27 | | fveq1 6190 |
. . . . . . . . . . 11
⊢ (𝑝 = {〈𝐼, 𝐼〉} → (𝑝‘𝑥) = ({〈𝐼, 𝐼〉}‘𝑥)) |
| 28 | 27 | oveq1d 6665 |
. . . . . . . . . 10
⊢ (𝑝 = {〈𝐼, 𝐼〉} → ((𝑝‘𝑥)𝑀𝑥) = (({〈𝐼, 𝐼〉}‘𝑥)𝑀𝑥)) |
| 29 | 28 | mpteq2dv 4745 |
. . . . . . . . 9
⊢ (𝑝 = {〈𝐼, 𝐼〉} → (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥)) = (𝑥 ∈ 𝑁 ↦ (({〈𝐼, 𝐼〉}‘𝑥)𝑀𝑥))) |
| 30 | 29 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝑝 = {〈𝐼, 𝐼〉} → ((mulGrp‘𝑅) Σg
(𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))) = ((mulGrp‘𝑅) Σg (𝑥 ∈ 𝑁 ↦ (({〈𝐼, 𝐼〉}‘𝑥)𝑀𝑥)))) |
| 31 | 26, 30 | oveq12d 6668 |
. . . . . . 7
⊢ (𝑝 = {〈𝐼, 𝐼〉} → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥)))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{〈𝐼, 𝐼〉})(.r‘𝑅)((mulGrp‘𝑅) Σg
(𝑥 ∈ 𝑁 ↦ (({〈𝐼, 𝐼〉}‘𝑥)𝑀𝑥))))) |
| 32 | 31 | fmptsng 6434 |
. . . . . 6
⊢
(({〈𝐼, 𝐼〉} ∈ V ∧
((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘{〈𝐼, 𝐼〉})(.r‘𝑅)((mulGrp‘𝑅) Σg
(𝑥 ∈ 𝑁 ↦ (({〈𝐼, 𝐼〉}‘𝑥)𝑀𝑥)))) ∈ V) → {〈{〈𝐼, 𝐼〉}, ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{〈𝐼, 𝐼〉})(.r‘𝑅)((mulGrp‘𝑅) Σg
(𝑥 ∈ 𝑁 ↦ (({〈𝐼, 𝐼〉}‘𝑥)𝑀𝑥))))〉} = (𝑝 ∈ {{〈𝐼, 𝐼〉}} ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥)))))) |
| 33 | 32 | eqcomd 2628 |
. . . . 5
⊢
(({〈𝐼, 𝐼〉} ∈ V ∧
((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘{〈𝐼, 𝐼〉})(.r‘𝑅)((mulGrp‘𝑅) Σg
(𝑥 ∈ 𝑁 ↦ (({〈𝐼, 𝐼〉}‘𝑥)𝑀𝑥)))) ∈ V) → (𝑝 ∈ {{〈𝐼, 𝐼〉}} ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))) = {〈{〈𝐼, 𝐼〉}, ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{〈𝐼, 𝐼〉})(.r‘𝑅)((mulGrp‘𝑅) Σg
(𝑥 ∈ 𝑁 ↦ (({〈𝐼, 𝐼〉}‘𝑥)𝑀𝑥))))〉}) |
| 34 | 24, 25, 33 | sylancl 694 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝑝 ∈ {{〈𝐼, 𝐼〉}} ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))) = {〈{〈𝐼, 𝐼〉}, ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{〈𝐼, 𝐼〉})(.r‘𝑅)((mulGrp‘𝑅) Σg
(𝑥 ∈ 𝑁 ↦ (({〈𝐼, 𝐼〉}‘𝑥)𝑀𝑥))))〉}) |
| 35 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(SymGrp‘𝑁) =
(SymGrp‘𝑁) |
| 36 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ {𝑏 ∈
(Base‘(SymGrp‘𝑁)) ∣ dom (𝑏 ∖ I ) ∈ Fin} = {𝑏 ∈
(Base‘(SymGrp‘𝑁)) ∣ dom (𝑏 ∖ I ) ∈ Fin} |
| 37 | 35, 4, 36, 6 | psgnfn 17921 |
. . . . . . . . . . . 12
⊢
(pmSgn‘𝑁) Fn
{𝑏 ∈
(Base‘(SymGrp‘𝑁)) ∣ dom (𝑏 ∖ I ) ∈ Fin} |
| 38 | 19 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) → (Base‘(SymGrp‘{𝐼})) = {{〈𝐼, 𝐼〉}}) |
| 39 | 13, 38 | eqtrd 2656 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) → (Base‘(SymGrp‘𝑁)) = {{〈𝐼, 𝐼〉}}) |
| 40 | 39 | 3ad2ant2 1083 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (Base‘(SymGrp‘𝑁)) = {{〈𝐼, 𝐼〉}}) |
| 41 | | rabeq 3192 |
. . . . . . . . . . . . . . 15
⊢
((Base‘(SymGrp‘𝑁)) = {{〈𝐼, 𝐼〉}} → {𝑏 ∈ (Base‘(SymGrp‘𝑁)) ∣ dom (𝑏 ∖ I ) ∈ Fin} =
{𝑏 ∈ {{〈𝐼, 𝐼〉}} ∣ dom (𝑏 ∖ I ) ∈ Fin}) |
| 42 | 40, 41 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → {𝑏 ∈ (Base‘(SymGrp‘𝑁)) ∣ dom (𝑏 ∖ I ) ∈ Fin} =
{𝑏 ∈ {{〈𝐼, 𝐼〉}} ∣ dom (𝑏 ∖ I ) ∈ Fin}) |
| 43 | | difeq1 3721 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = {〈𝐼, 𝐼〉} → (𝑏 ∖ I ) = ({〈𝐼, 𝐼〉} ∖ I )) |
| 44 | 43 | dmeqd 5326 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = {〈𝐼, 𝐼〉} → dom (𝑏 ∖ I ) = dom ({〈𝐼, 𝐼〉} ∖ I )) |
| 45 | 44 | eleq1d 2686 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = {〈𝐼, 𝐼〉} → (dom (𝑏 ∖ I ) ∈ Fin ↔ dom
({〈𝐼, 𝐼〉} ∖ I ) ∈
Fin)) |
| 46 | 45 | rabsnif 4258 |
. . . . . . . . . . . . . . 15
⊢ {𝑏 ∈ {{〈𝐼, 𝐼〉}} ∣ dom (𝑏 ∖ I ) ∈ Fin} = if(dom
({〈𝐼, 𝐼〉} ∖ I ) ∈ Fin,
{{〈𝐼, 𝐼〉}},
∅) |
| 47 | 46 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → {𝑏 ∈ {{〈𝐼, 𝐼〉}} ∣ dom (𝑏 ∖ I ) ∈ Fin} = if(dom
({〈𝐼, 𝐼〉} ∖ I ) ∈ Fin,
{{〈𝐼, 𝐼〉}},
∅)) |
| 48 | | restidsing 5458 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ( I
↾ {𝐼}) = ({𝐼} × {𝐼}) |
| 49 | | xpsng 6406 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐼 ∈ 𝑉) → ({𝐼} × {𝐼}) = {〈𝐼, 𝐼〉}) |
| 50 | 49 | anidms 677 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐼 ∈ 𝑉 → ({𝐼} × {𝐼}) = {〈𝐼, 𝐼〉}) |
| 51 | 48, 50 | syl5req 2669 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐼 ∈ 𝑉 → {〈𝐼, 𝐼〉} = ( I ↾ {𝐼})) |
| 52 | | fnsng 5938 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐼 ∈ 𝑉) → {〈𝐼, 𝐼〉} Fn {𝐼}) |
| 53 | 52 | anidms 677 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐼 ∈ 𝑉 → {〈𝐼, 𝐼〉} Fn {𝐼}) |
| 54 | | fnnfpeq0 6444 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈𝐼, 𝐼〉} Fn {𝐼} → (dom ({〈𝐼, 𝐼〉} ∖ I ) = ∅ ↔
{〈𝐼, 𝐼〉} = ( I ↾ {𝐼}))) |
| 55 | 53, 54 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐼 ∈ 𝑉 → (dom ({〈𝐼, 𝐼〉} ∖ I ) = ∅ ↔
{〈𝐼, 𝐼〉} = ( I ↾ {𝐼}))) |
| 56 | 51, 55 | mpbird 247 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐼 ∈ 𝑉 → dom ({〈𝐼, 𝐼〉} ∖ I ) =
∅) |
| 57 | | 0fin 8188 |
. . . . . . . . . . . . . . . . . 18
⊢ ∅
∈ Fin |
| 58 | 56, 57 | syl6eqel 2709 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐼 ∈ 𝑉 → dom ({〈𝐼, 𝐼〉} ∖ I ) ∈
Fin) |
| 59 | 58 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) → dom ({〈𝐼, 𝐼〉} ∖ I ) ∈
Fin) |
| 60 | 59 | 3ad2ant2 1083 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → dom ({〈𝐼, 𝐼〉} ∖ I ) ∈
Fin) |
| 61 | 60 | iftrued 4094 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → if(dom ({〈𝐼, 𝐼〉} ∖ I ) ∈ Fin,
{{〈𝐼, 𝐼〉}}, ∅) =
{{〈𝐼, 𝐼〉}}) |
| 62 | 42, 47, 61 | 3eqtrrd 2661 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → {{〈𝐼, 𝐼〉}} = {𝑏 ∈ (Base‘(SymGrp‘𝑁)) ∣ dom (𝑏 ∖ I ) ∈
Fin}) |
| 63 | 62 | fneq2d 5982 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → ((pmSgn‘𝑁) Fn {{〈𝐼, 𝐼〉}} ↔ (pmSgn‘𝑁) Fn {𝑏 ∈ (Base‘(SymGrp‘𝑁)) ∣ dom (𝑏 ∖ I ) ∈
Fin})) |
| 64 | 37, 63 | mpbiri 248 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (pmSgn‘𝑁) Fn {{〈𝐼, 𝐼〉}}) |
| 65 | 23 | snid 4208 |
. . . . . . . . . . 11
⊢
{〈𝐼, 𝐼〉} ∈ {{〈𝐼, 𝐼〉}} |
| 66 | | fvco2 6273 |
. . . . . . . . . . 11
⊢
(((pmSgn‘𝑁) Fn
{{〈𝐼, 𝐼〉}} ∧ {〈𝐼, 𝐼〉} ∈ {{〈𝐼, 𝐼〉}}) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{〈𝐼, 𝐼〉}) = ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈𝐼, 𝐼〉}))) |
| 67 | 64, 65, 66 | sylancl 694 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{〈𝐼, 𝐼〉}) = ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈𝐼, 𝐼〉}))) |
| 68 | | fveq2 6191 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 = {𝐼} → (pmSgn‘𝑁) = (pmSgn‘{𝐼})) |
| 69 | 68 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) → (pmSgn‘𝑁) = (pmSgn‘{𝐼})) |
| 70 | 69 | 3ad2ant2 1083 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (pmSgn‘𝑁) = (pmSgn‘{𝐼})) |
| 71 | 70 | fveq1d 6193 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → ((pmSgn‘𝑁)‘{〈𝐼, 𝐼〉}) = ((pmSgn‘{𝐼})‘{〈𝐼, 𝐼〉})) |
| 72 | | snidg 4206 |
. . . . . . . . . . . . . . . . . 18
⊢
({〈𝐼, 𝐼〉} ∈ V →
{〈𝐼, 𝐼〉} ∈ {{〈𝐼, 𝐼〉}}) |
| 73 | 23, 72 | mp1i 13 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐼 ∈ 𝑉 → {〈𝐼, 𝐼〉} ∈ {{〈𝐼, 𝐼〉}}) |
| 74 | 73, 19 | eleqtrrd 2704 |
. . . . . . . . . . . . . . . 16
⊢ (𝐼 ∈ 𝑉 → {〈𝐼, 𝐼〉} ∈
(Base‘(SymGrp‘{𝐼}))) |
| 75 | 74 | ancli 574 |
. . . . . . . . . . . . . . 15
⊢ (𝐼 ∈ 𝑉 → (𝐼 ∈ 𝑉 ∧ {〈𝐼, 𝐼〉} ∈
(Base‘(SymGrp‘{𝐼})))) |
| 76 | 75 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) → (𝐼 ∈ 𝑉 ∧ {〈𝐼, 𝐼〉} ∈
(Base‘(SymGrp‘{𝐼})))) |
| 77 | 76 | 3ad2ant2 1083 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐼 ∈ 𝑉 ∧ {〈𝐼, 𝐼〉} ∈
(Base‘(SymGrp‘{𝐼})))) |
| 78 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢
(pmSgn‘{𝐼}) =
(pmSgn‘{𝐼}) |
| 79 | 18, 16, 17, 78 | psgnsn 17940 |
. . . . . . . . . . . . 13
⊢ ((𝐼 ∈ 𝑉 ∧ {〈𝐼, 𝐼〉} ∈
(Base‘(SymGrp‘{𝐼}))) → ((pmSgn‘{𝐼})‘{〈𝐼, 𝐼〉}) = 1) |
| 80 | 77, 79 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → ((pmSgn‘{𝐼})‘{〈𝐼, 𝐼〉}) = 1) |
| 81 | 71, 80 | eqtrd 2656 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → ((pmSgn‘𝑁)‘{〈𝐼, 𝐼〉}) = 1) |
| 82 | 81 | fveq2d 6195 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → ((ℤRHom‘𝑅)‘((pmSgn‘𝑁)‘{〈𝐼, 𝐼〉})) = ((ℤRHom‘𝑅)‘1)) |
| 83 | | crngring 18558 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 84 | 83 | 3ad2ant1 1082 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 85 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 86 | 5, 85 | zrh1 19861 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring →
((ℤRHom‘𝑅)‘1) = (1r‘𝑅)) |
| 87 | 84, 86 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → ((ℤRHom‘𝑅)‘1) =
(1r‘𝑅)) |
| 88 | 67, 82, 87 | 3eqtrd 2660 |
. . . . . . . . 9
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{〈𝐼, 𝐼〉}) = (1r‘𝑅)) |
| 89 | | simp2l 1087 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 𝑁 = {𝐼}) |
| 90 | 89 | mpteq1d 4738 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝑥 ∈ 𝑁 ↦ (({〈𝐼, 𝐼〉}‘𝑥)𝑀𝑥)) = (𝑥 ∈ {𝐼} ↦ (({〈𝐼, 𝐼〉}‘𝑥)𝑀𝑥))) |
| 91 | 90 | oveq2d 6666 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → ((mulGrp‘𝑅) Σg (𝑥 ∈ 𝑁 ↦ (({〈𝐼, 𝐼〉}‘𝑥)𝑀𝑥))) = ((mulGrp‘𝑅) Σg (𝑥 ∈ {𝐼} ↦ (({〈𝐼, 𝐼〉}‘𝑥)𝑀𝑥)))) |
| 92 | 8 | ringmgp 18553 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ Ring →
(mulGrp‘𝑅) ∈
Mnd) |
| 93 | 83, 92 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ CRing →
(mulGrp‘𝑅) ∈
Mnd) |
| 94 | 93 | 3ad2ant1 1082 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (mulGrp‘𝑅) ∈ Mnd) |
| 95 | | snidg 4206 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ {𝐼}) |
| 96 | 95 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) → 𝐼 ∈ {𝐼}) |
| 97 | | eleq2 2690 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 = {𝐼} → (𝐼 ∈ 𝑁 ↔ 𝐼 ∈ {𝐼})) |
| 98 | 97 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) → (𝐼 ∈ 𝑁 ↔ 𝐼 ∈ {𝐼})) |
| 99 | 96, 98 | mpbird 247 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) → 𝐼 ∈ 𝑁) |
| 100 | 3 | eleq2i 2693 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ 𝐵 ↔ 𝑀 ∈ (Base‘𝐴)) |
| 101 | 100 | biimpi 206 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ (Base‘𝐴)) |
| 102 | | simpl 473 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → 𝐼 ∈ 𝑁) |
| 103 | | simpr 477 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → 𝑀 ∈ (Base‘𝐴)) |
| 104 | 102, 102,
103 | 3jca 1242 |
. . . . . . . . . . . . . . 15
⊢ ((𝐼 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝐼 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴))) |
| 105 | 99, 101, 104 | syl2an 494 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐼 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴))) |
| 106 | 105 | 3adant1 1079 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐼 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴))) |
| 107 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 108 | 2, 107 | matecl 20231 |
. . . . . . . . . . . . 13
⊢ ((𝐼 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝐼𝑀𝐼) ∈ (Base‘𝑅)) |
| 109 | 106, 108 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐼𝑀𝐼) ∈ (Base‘𝑅)) |
| 110 | 8, 107 | mgpbas 18495 |
. . . . . . . . . . . 12
⊢
(Base‘𝑅) =
(Base‘(mulGrp‘𝑅)) |
| 111 | 109, 110 | syl6eleq 2711 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐼𝑀𝐼) ∈ (Base‘(mulGrp‘𝑅))) |
| 112 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) |
| 113 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐼 → ({〈𝐼, 𝐼〉}‘𝑥) = ({〈𝐼, 𝐼〉}‘𝐼)) |
| 114 | | eqvisset 3211 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝐼 → 𝐼 ∈ V) |
| 115 | | fvsng 6447 |
. . . . . . . . . . . . . . 15
⊢ ((𝐼 ∈ V ∧ 𝐼 ∈ V) → ({〈𝐼, 𝐼〉}‘𝐼) = 𝐼) |
| 116 | 114, 114,
115 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐼 → ({〈𝐼, 𝐼〉}‘𝐼) = 𝐼) |
| 117 | 113, 116 | eqtrd 2656 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐼 → ({〈𝐼, 𝐼〉}‘𝑥) = 𝐼) |
| 118 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐼 → 𝑥 = 𝐼) |
| 119 | 117, 118 | oveq12d 6668 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐼 → (({〈𝐼, 𝐼〉}‘𝑥)𝑀𝑥) = (𝐼𝑀𝐼)) |
| 120 | 112, 119 | gsumsn 18354 |
. . . . . . . . . . 11
⊢
(((mulGrp‘𝑅)
∈ Mnd ∧ 𝐼 ∈
𝑉 ∧ (𝐼𝑀𝐼) ∈ (Base‘(mulGrp‘𝑅))) → ((mulGrp‘𝑅) Σg
(𝑥 ∈ {𝐼} ↦ (({〈𝐼, 𝐼〉}‘𝑥)𝑀𝑥))) = (𝐼𝑀𝐼)) |
| 121 | 94, 15, 111, 120 | syl3anc 1326 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → ((mulGrp‘𝑅) Σg (𝑥 ∈ {𝐼} ↦ (({〈𝐼, 𝐼〉}‘𝑥)𝑀𝑥))) = (𝐼𝑀𝐼)) |
| 122 | 91, 121 | eqtrd 2656 |
. . . . . . . . 9
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → ((mulGrp‘𝑅) Σg (𝑥 ∈ 𝑁 ↦ (({〈𝐼, 𝐼〉}‘𝑥)𝑀𝑥))) = (𝐼𝑀𝐼)) |
| 123 | 88, 122 | oveq12d 6668 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{〈𝐼, 𝐼〉})(.r‘𝑅)((mulGrp‘𝑅) Σg
(𝑥 ∈ 𝑁 ↦ (({〈𝐼, 𝐼〉}‘𝑥)𝑀𝑥)))) = ((1r‘𝑅)(.r‘𝑅)(𝐼𝑀𝐼))) |
| 124 | 99 | 3ad2ant2 1083 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 𝐼 ∈ 𝑁) |
| 125 | 101 | 3ad2ant3 1084 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ (Base‘𝐴)) |
| 126 | 124, 124,
125, 108 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐼𝑀𝐼) ∈ (Base‘𝑅)) |
| 127 | 107, 7, 85 | ringlidm 18571 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝐼𝑀𝐼) ∈ (Base‘𝑅)) → ((1r‘𝑅)(.r‘𝑅)(𝐼𝑀𝐼)) = (𝐼𝑀𝐼)) |
| 128 | 84, 126, 127 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → ((1r‘𝑅)(.r‘𝑅)(𝐼𝑀𝐼)) = (𝐼𝑀𝐼)) |
| 129 | 123, 128 | eqtrd 2656 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{〈𝐼, 𝐼〉})(.r‘𝑅)((mulGrp‘𝑅) Σg
(𝑥 ∈ 𝑁 ↦ (({〈𝐼, 𝐼〉}‘𝑥)𝑀𝑥)))) = (𝐼𝑀𝐼)) |
| 130 | 129 | opeq2d 4409 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 〈{〈𝐼, 𝐼〉}, ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{〈𝐼, 𝐼〉})(.r‘𝑅)((mulGrp‘𝑅) Σg
(𝑥 ∈ 𝑁 ↦ (({〈𝐼, 𝐼〉}‘𝑥)𝑀𝑥))))〉 = 〈{〈𝐼, 𝐼〉}, (𝐼𝑀𝐼)〉) |
| 131 | 130 | sneqd 4189 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → {〈{〈𝐼, 𝐼〉}, ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{〈𝐼, 𝐼〉})(.r‘𝑅)((mulGrp‘𝑅) Σg
(𝑥 ∈ 𝑁 ↦ (({〈𝐼, 𝐼〉}‘𝑥)𝑀𝑥))))〉} = {〈{〈𝐼, 𝐼〉}, (𝐼𝑀𝐼)〉}) |
| 132 | | ovex 6678 |
. . . . . 6
⊢ (𝐼𝑀𝐼) ∈ V |
| 133 | | eqidd 2623 |
. . . . . . 7
⊢ (𝑦 = {〈𝐼, 𝐼〉} → (𝐼𝑀𝐼) = (𝐼𝑀𝐼)) |
| 134 | 133 | fmptsng 6434 |
. . . . . 6
⊢
(({〈𝐼, 𝐼〉} ∈ V ∧ (𝐼𝑀𝐼) ∈ V) → {〈{〈𝐼, 𝐼〉}, (𝐼𝑀𝐼)〉} = (𝑦 ∈ {{〈𝐼, 𝐼〉}} ↦ (𝐼𝑀𝐼))) |
| 135 | 24, 132, 134 | sylancl 694 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → {〈{〈𝐼, 𝐼〉}, (𝐼𝑀𝐼)〉} = (𝑦 ∈ {{〈𝐼, 𝐼〉}} ↦ (𝐼𝑀𝐼))) |
| 136 | 131, 135 | eqtrd 2656 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → {〈{〈𝐼, 𝐼〉}, ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘{〈𝐼, 𝐼〉})(.r‘𝑅)((mulGrp‘𝑅) Σg
(𝑥 ∈ 𝑁 ↦ (({〈𝐼, 𝐼〉}‘𝑥)𝑀𝑥))))〉} = (𝑦 ∈ {{〈𝐼, 𝐼〉}} ↦ (𝐼𝑀𝐼))) |
| 137 | 22, 34, 136 | 3eqtrd 2660 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦
((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))) = (𝑦 ∈ {{〈𝐼, 𝐼〉}} ↦ (𝐼𝑀𝐼))) |
| 138 | 137 | oveq2d 6666 |
. 2
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥)))))) = (𝑅 Σg (𝑦 ∈ {{〈𝐼, 𝐼〉}} ↦ (𝐼𝑀𝐼)))) |
| 139 | | ringmnd 18556 |
. . . . 5
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
| 140 | 83, 139 | syl 17 |
. . . 4
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Mnd) |
| 141 | 140 | 3ad2ant1 1082 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Mnd) |
| 142 | 107, 133 | gsumsn 18354 |
. . 3
⊢ ((𝑅 ∈ Mnd ∧ {〈𝐼, 𝐼〉} ∈ V ∧ (𝐼𝑀𝐼) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑦 ∈ {{〈𝐼, 𝐼〉}} ↦ (𝐼𝑀𝐼))) = (𝐼𝑀𝐼)) |
| 143 | 141, 24, 126, 142 | syl3anc 1326 |
. 2
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝑅 Σg (𝑦 ∈ {{〈𝐼, 𝐼〉}} ↦ (𝐼𝑀𝐼))) = (𝐼𝑀𝐼)) |
| 144 | 10, 138, 143 | 3eqtrd 2660 |
1
⊢ ((𝑅 ∈ CRing ∧ (𝑁 = {𝐼} ∧ 𝐼 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐷‘𝑀) = (𝐼𝑀𝐼)) |