| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > restidsing | Structured version Visualization version Unicode version | ||
| Description: Restriction of the identity to a singleton. (Contributed by FL, 2-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) |
| Ref | Expression |
|---|---|
| restidsing |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5426 |
. 2
| |
| 2 | relxp 5227 |
. 2
| |
| 3 | velsn 4193 |
. . . . 5
| |
| 4 | velsn 4193 |
. . . . 5
| |
| 5 | 3, 4 | anbi12i 733 |
. . . 4
|
| 6 | vex 3203 |
. . . . . . 7
| |
| 7 | 6 | ideq 5274 |
. . . . . 6
|
| 8 | 7, 3 | anbi12i 733 |
. . . . 5
|
| 9 | ancom 466 |
. . . . 5
| |
| 10 | eqeq1 2626 |
. . . . . . 7
| |
| 11 | eqcom 2629 |
. . . . . . 7
| |
| 12 | 10, 11 | syl6bb 276 |
. . . . . 6
|
| 13 | 12 | pm5.32i 669 |
. . . . 5
|
| 14 | 8, 9, 13 | 3bitri 286 |
. . . 4
|
| 15 | df-br 4654 |
. . . . 5
| |
| 16 | 15 | anbi1i 731 |
. . . 4
|
| 17 | 5, 14, 16 | 3bitr2ri 289 |
. . 3
|
| 18 | 6 | opelres 5401 |
. . 3
|
| 19 | opelxp 5146 |
. . 3
| |
| 20 | 17, 18, 19 | 3bitr4i 292 |
. 2
|
| 21 | 1, 2, 20 | eqrelriiv 5214 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-res 5126 |
| This theorem is referenced by: residpr 6409 grp1inv 17523 psgnsn 17940 m1detdiag 20403 |
| Copyright terms: Public domain | W3C validator |