Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resvval Structured version   Visualization version   GIF version

Theorem resvval 29827
Description: Value of structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.)
Hypotheses
Ref Expression
resvsca.r 𝑅 = (𝑊v 𝐴)
resvsca.f 𝐹 = (Scalar‘𝑊)
resvsca.b 𝐵 = (Base‘𝐹)
Assertion
Ref Expression
resvval ((𝑊𝑋𝐴𝑌) → 𝑅 = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))

Proof of Theorem resvval
Dummy variables 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resvsca.r . 2 𝑅 = (𝑊v 𝐴)
2 elex 3212 . . 3 (𝑊𝑋𝑊 ∈ V)
3 elex 3212 . . 3 (𝐴𝑌𝐴 ∈ V)
4 ovex 6678 . . . . . 6 (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩) ∈ V
5 ifcl 4130 . . . . . 6 ((𝑊 ∈ V ∧ (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩) ∈ V) → if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)) ∈ V)
64, 5mpan2 707 . . . . 5 (𝑊 ∈ V → if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)) ∈ V)
76adantr 481 . . . 4 ((𝑊 ∈ V ∧ 𝐴 ∈ V) → if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)) ∈ V)
8 simpl 473 . . . . . . . . . . 11 ((𝑤 = 𝑊𝑥 = 𝐴) → 𝑤 = 𝑊)
98fveq2d 6195 . . . . . . . . . 10 ((𝑤 = 𝑊𝑥 = 𝐴) → (Scalar‘𝑤) = (Scalar‘𝑊))
10 resvsca.f . . . . . . . . . 10 𝐹 = (Scalar‘𝑊)
119, 10syl6eqr 2674 . . . . . . . . 9 ((𝑤 = 𝑊𝑥 = 𝐴) → (Scalar‘𝑤) = 𝐹)
1211fveq2d 6195 . . . . . . . 8 ((𝑤 = 𝑊𝑥 = 𝐴) → (Base‘(Scalar‘𝑤)) = (Base‘𝐹))
13 resvsca.b . . . . . . . 8 𝐵 = (Base‘𝐹)
1412, 13syl6eqr 2674 . . . . . . 7 ((𝑤 = 𝑊𝑥 = 𝐴) → (Base‘(Scalar‘𝑤)) = 𝐵)
15 simpr 477 . . . . . . 7 ((𝑤 = 𝑊𝑥 = 𝐴) → 𝑥 = 𝐴)
1614, 15sseq12d 3634 . . . . . 6 ((𝑤 = 𝑊𝑥 = 𝐴) → ((Base‘(Scalar‘𝑤)) ⊆ 𝑥𝐵𝐴))
1711, 15oveq12d 6668 . . . . . . . 8 ((𝑤 = 𝑊𝑥 = 𝐴) → ((Scalar‘𝑤) ↾s 𝑥) = (𝐹s 𝐴))
1817opeq2d 4409 . . . . . . 7 ((𝑤 = 𝑊𝑥 = 𝐴) → ⟨(Scalar‘ndx), ((Scalar‘𝑤) ↾s 𝑥)⟩ = ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)
198, 18oveq12d 6668 . . . . . 6 ((𝑤 = 𝑊𝑥 = 𝐴) → (𝑤 sSet ⟨(Scalar‘ndx), ((Scalar‘𝑤) ↾s 𝑥)⟩) = (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩))
2016, 8, 19ifbieq12d 4113 . . . . 5 ((𝑤 = 𝑊𝑥 = 𝐴) → if((Base‘(Scalar‘𝑤)) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Scalar‘ndx), ((Scalar‘𝑤) ↾s 𝑥)⟩)) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
21 df-resv 29825 . . . . 5 v = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘(Scalar‘𝑤)) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Scalar‘ndx), ((Scalar‘𝑤) ↾s 𝑥)⟩)))
2220, 21ovmpt2ga 6790 . . . 4 ((𝑊 ∈ V ∧ 𝐴 ∈ V ∧ if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)) ∈ V) → (𝑊v 𝐴) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
237, 22mpd3an3 1425 . . 3 ((𝑊 ∈ V ∧ 𝐴 ∈ V) → (𝑊v 𝐴) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
242, 3, 23syl2an 494 . 2 ((𝑊𝑋𝐴𝑌) → (𝑊v 𝐴) = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
251, 24syl5eq 2668 1 ((𝑊𝑋𝐴𝑌) → 𝑅 = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  ifcif 4086  cop 4183  cfv 5888  (class class class)co 6650  ndxcnx 15854   sSet csts 15855  Basecbs 15857  s cress 15858  Scalarcsca 15944  v cresv 29824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-resv 29825
This theorem is referenced by:  resvid2  29828  resvval2  29829
  Copyright terms: Public domain W3C validator