MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgredg2v Structured version   Visualization version   GIF version

Theorem uspgredg2v 26116
Description: In a simple pseudograph, the mapping of edges having a fixed endpoint to the "other" vertex of the edge (which may be the fixed vertex itself in the case of a loop) is a one-to-one function into the set of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 6-Dec-2020.)
Hypotheses
Ref Expression
uspgredg2v.v 𝑉 = (Vtx‘𝐺)
uspgredg2v.e 𝐸 = (Edg‘𝐺)
uspgredg2v.a 𝐴 = {𝑒𝐸𝑁𝑒}
uspgredg2v.f 𝐹 = (𝑦𝐴 ↦ (𝑧𝑉 𝑦 = {𝑁, 𝑧}))
Assertion
Ref Expression
uspgredg2v ((𝐺 ∈ USPGraph ∧ 𝑁𝑉) → 𝐹:𝐴1-1𝑉)
Distinct variable groups:   𝑒,𝐸   𝑧,𝐺   𝑒,𝑁   𝑧,𝑁   𝑧,𝑉   𝑦,𝐴   𝑦,𝐺   𝑦,𝑁,𝑧   𝑦,𝑉   𝑦,𝑒
Allowed substitution hints:   𝐴(𝑧,𝑒)   𝐸(𝑦,𝑧)   𝐹(𝑦,𝑧,𝑒)   𝐺(𝑒)   𝑉(𝑒)

Proof of Theorem uspgredg2v
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uspgredg2v.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 uspgredg2v.e . . . . 5 𝐸 = (Edg‘𝐺)
3 uspgredg2v.a . . . . 5 𝐴 = {𝑒𝐸𝑁𝑒}
41, 2, 3uspgredg2vlem 26115 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑦𝐴) → (𝑧𝑉 𝑦 = {𝑁, 𝑧}) ∈ 𝑉)
54ralrimiva 2966 . . 3 (𝐺 ∈ USPGraph → ∀𝑦𝐴 (𝑧𝑉 𝑦 = {𝑁, 𝑧}) ∈ 𝑉)
65adantr 481 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁𝑉) → ∀𝑦𝐴 (𝑧𝑉 𝑦 = {𝑁, 𝑧}) ∈ 𝑉)
7 preq2 4269 . . . . . . 7 (𝑧 = 𝑛 → {𝑁, 𝑧} = {𝑁, 𝑛})
87eqeq2d 2632 . . . . . 6 (𝑧 = 𝑛 → (𝑦 = {𝑁, 𝑧} ↔ 𝑦 = {𝑁, 𝑛}))
98cbvriotav 6622 . . . . 5 (𝑧𝑉 𝑦 = {𝑁, 𝑧}) = (𝑛𝑉 𝑦 = {𝑁, 𝑛})
107eqeq2d 2632 . . . . . 6 (𝑧 = 𝑛 → (𝑥 = {𝑁, 𝑧} ↔ 𝑥 = {𝑁, 𝑛}))
1110cbvriotav 6622 . . . . 5 (𝑧𝑉 𝑥 = {𝑁, 𝑧}) = (𝑛𝑉 𝑥 = {𝑁, 𝑛})
12 simpl 473 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑁𝑉) → 𝐺 ∈ USPGraph )
13 eleq2 2690 . . . . . . . . . . 11 (𝑒 = 𝑦 → (𝑁𝑒𝑁𝑦))
1413, 3elrab2 3366 . . . . . . . . . 10 (𝑦𝐴 ↔ (𝑦𝐸𝑁𝑦))
152eleq2i 2693 . . . . . . . . . . . 12 (𝑦𝐸𝑦 ∈ (Edg‘𝐺))
1615biimpi 206 . . . . . . . . . . 11 (𝑦𝐸𝑦 ∈ (Edg‘𝐺))
1716anim1i 592 . . . . . . . . . 10 ((𝑦𝐸𝑁𝑦) → (𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦))
1814, 17sylbi 207 . . . . . . . . 9 (𝑦𝐴 → (𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦))
1918adantr 481 . . . . . . . 8 ((𝑦𝐴𝑥𝐴) → (𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦))
2012, 19anim12i 590 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → (𝐺 ∈ USPGraph ∧ (𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦)))
21 3anass 1042 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦) ↔ (𝐺 ∈ USPGraph ∧ (𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦)))
2220, 21sylibr 224 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → (𝐺 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦))
23 uspgredg2vtxeu 26112 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦) → ∃!𝑛 ∈ (Vtx‘𝐺)𝑦 = {𝑁, 𝑛})
24 reueq1 3140 . . . . . . . 8 (𝑉 = (Vtx‘𝐺) → (∃!𝑛𝑉 𝑦 = {𝑁, 𝑛} ↔ ∃!𝑛 ∈ (Vtx‘𝐺)𝑦 = {𝑁, 𝑛}))
251, 24ax-mp 5 . . . . . . 7 (∃!𝑛𝑉 𝑦 = {𝑁, 𝑛} ↔ ∃!𝑛 ∈ (Vtx‘𝐺)𝑦 = {𝑁, 𝑛})
2623, 25sylibr 224 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦) → ∃!𝑛𝑉 𝑦 = {𝑁, 𝑛})
2722, 26syl 17 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → ∃!𝑛𝑉 𝑦 = {𝑁, 𝑛})
28 eleq2 2690 . . . . . . . . . . 11 (𝑒 = 𝑥 → (𝑁𝑒𝑁𝑥))
2928, 3elrab2 3366 . . . . . . . . . 10 (𝑥𝐴 ↔ (𝑥𝐸𝑁𝑥))
302eleq2i 2693 . . . . . . . . . . . 12 (𝑥𝐸𝑥 ∈ (Edg‘𝐺))
3130biimpi 206 . . . . . . . . . . 11 (𝑥𝐸𝑥 ∈ (Edg‘𝐺))
3231anim1i 592 . . . . . . . . . 10 ((𝑥𝐸𝑁𝑥) → (𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥))
3329, 32sylbi 207 . . . . . . . . 9 (𝑥𝐴 → (𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥))
3433adantl 482 . . . . . . . 8 ((𝑦𝐴𝑥𝐴) → (𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥))
3512, 34anim12i 590 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → (𝐺 ∈ USPGraph ∧ (𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥)))
36 3anass 1042 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥) ↔ (𝐺 ∈ USPGraph ∧ (𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥)))
3735, 36sylibr 224 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → (𝐺 ∈ USPGraph ∧ 𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥))
38 uspgredg2vtxeu 26112 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥) → ∃!𝑛 ∈ (Vtx‘𝐺)𝑥 = {𝑁, 𝑛})
39 reueq1 3140 . . . . . . . 8 (𝑉 = (Vtx‘𝐺) → (∃!𝑛𝑉 𝑥 = {𝑁, 𝑛} ↔ ∃!𝑛 ∈ (Vtx‘𝐺)𝑥 = {𝑁, 𝑛}))
401, 39ax-mp 5 . . . . . . 7 (∃!𝑛𝑉 𝑥 = {𝑁, 𝑛} ↔ ∃!𝑛 ∈ (Vtx‘𝐺)𝑥 = {𝑁, 𝑛})
4138, 40sylibr 224 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥) → ∃!𝑛𝑉 𝑥 = {𝑁, 𝑛})
4237, 41syl 17 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → ∃!𝑛𝑉 𝑥 = {𝑁, 𝑛})
439, 11, 27, 42riotaeqimp 6634 . . . 4 ((((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) ∧ (𝑧𝑉 𝑦 = {𝑁, 𝑧}) = (𝑧𝑉 𝑥 = {𝑁, 𝑧})) → 𝑦 = 𝑥)
4443ex 450 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → ((𝑧𝑉 𝑦 = {𝑁, 𝑧}) = (𝑧𝑉 𝑥 = {𝑁, 𝑧}) → 𝑦 = 𝑥))
4544ralrimivva 2971 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁𝑉) → ∀𝑦𝐴𝑥𝐴 ((𝑧𝑉 𝑦 = {𝑁, 𝑧}) = (𝑧𝑉 𝑥 = {𝑁, 𝑧}) → 𝑦 = 𝑥))
46 uspgredg2v.f . . 3 𝐹 = (𝑦𝐴 ↦ (𝑧𝑉 𝑦 = {𝑁, 𝑧}))
47 eqeq1 2626 . . . 4 (𝑦 = 𝑥 → (𝑦 = {𝑁, 𝑧} ↔ 𝑥 = {𝑁, 𝑧}))
4847riotabidv 6613 . . 3 (𝑦 = 𝑥 → (𝑧𝑉 𝑦 = {𝑁, 𝑧}) = (𝑧𝑉 𝑥 = {𝑁, 𝑧}))
4946, 48f1mpt 6518 . 2 (𝐹:𝐴1-1𝑉 ↔ (∀𝑦𝐴 (𝑧𝑉 𝑦 = {𝑁, 𝑧}) ∈ 𝑉 ∧ ∀𝑦𝐴𝑥𝐴 ((𝑧𝑉 𝑦 = {𝑁, 𝑧}) = (𝑧𝑉 𝑥 = {𝑁, 𝑧}) → 𝑦 = 𝑥)))
506, 45, 49sylanbrc 698 1 ((𝐺 ∈ USPGraph ∧ 𝑁𝑉) → 𝐹:𝐴1-1𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  ∃!wreu 2914  {crab 2916  {cpr 4179  cmpt 4729  1-1wf1 5885  cfv 5888  crio 6610  Vtxcvtx 25874  Edgcedg 25939   USPGraph cuspgr 26043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-edg 25940  df-upgr 25977  df-uspgr 26045
This theorem is referenced by:  uspgredgleord  26124
  Copyright terms: Public domain W3C validator