MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexxfrd2 Structured version   Visualization version   GIF version

Theorem rexxfrd2 4885
Description: Transfer existence from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Variant of rexxfrd 4881. (Contributed by Alexander van der Vekens, 25-Apr-2018.)
Hypotheses
Ref Expression
ralxfrd2.1 ((𝜑𝑦𝐶) → 𝐴𝐵)
ralxfrd2.2 ((𝜑𝑥𝐵) → ∃𝑦𝐶 𝑥 = 𝐴)
ralxfrd2.3 ((𝜑𝑦𝐶𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rexxfrd2 (𝜑 → (∃𝑥𝐵 𝜓 ↔ ∃𝑦𝐶 𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐶   𝜒,𝑥   𝜑,𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝐴(𝑦)   𝐶(𝑦)

Proof of Theorem rexxfrd2
StepHypRef Expression
1 ralxfrd2.1 . . . 4 ((𝜑𝑦𝐶) → 𝐴𝐵)
2 ralxfrd2.2 . . . 4 ((𝜑𝑥𝐵) → ∃𝑦𝐶 𝑥 = 𝐴)
3 ralxfrd2.3 . . . . 5 ((𝜑𝑦𝐶𝑥 = 𝐴) → (𝜓𝜒))
43notbid 308 . . . 4 ((𝜑𝑦𝐶𝑥 = 𝐴) → (¬ 𝜓 ↔ ¬ 𝜒))
51, 2, 4ralxfrd2 4884 . . 3 (𝜑 → (∀𝑥𝐵 ¬ 𝜓 ↔ ∀𝑦𝐶 ¬ 𝜒))
65notbid 308 . 2 (𝜑 → (¬ ∀𝑥𝐵 ¬ 𝜓 ↔ ¬ ∀𝑦𝐶 ¬ 𝜒))
7 dfrex2 2996 . 2 (∃𝑥𝐵 𝜓 ↔ ¬ ∀𝑥𝐵 ¬ 𝜓)
8 dfrex2 2996 . 2 (∃𝑦𝐶 𝜒 ↔ ¬ ∀𝑦𝐶 ¬ 𝜒)
96, 7, 83bitr4g 303 1 (𝜑 → (∃𝑥𝐵 𝜓 ↔ ∃𝑦𝐶 𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202
This theorem is referenced by:  cshimadifsn  13575  cshimadifsn0  13576  ntrclsneine0lem  38362
  Copyright terms: Public domain W3C validator