![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclsneine0lem | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that at least one (pseudo-)neighborbood of a particular point exists hold equally. (Contributed by RP, 21-May-2021.) |
Ref | Expression |
---|---|
ntrcls.o | ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑𝑚 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
ntrcls.d | ⊢ 𝐷 = (𝑂‘𝐵) |
ntrcls.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
ntrclslem0.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
ntrclsneine0lem | ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐾‘𝑠))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6191 | . . . 4 ⊢ (𝑠 = 𝑡 → (𝐼‘𝑠) = (𝐼‘𝑡)) | |
2 | 1 | eleq2d 2687 | . . 3 ⊢ (𝑠 = 𝑡 → (𝑋 ∈ (𝐼‘𝑠) ↔ 𝑋 ∈ (𝐼‘𝑡))) |
3 | 2 | cbvrexv 3172 | . 2 ⊢ (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ ∃𝑡 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑡)) |
4 | ntrcls.d | . . . . 5 ⊢ 𝐷 = (𝑂‘𝐵) | |
5 | ntrcls.r | . . . . 5 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
6 | 4, 5 | ntrclsrcomplex 38333 | . . . 4 ⊢ (𝜑 → (𝐵 ∖ 𝑠) ∈ 𝒫 𝐵) |
7 | 6 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑠) ∈ 𝒫 𝐵) |
8 | 4, 5 | ntrclsrcomplex 38333 | . . . . 5 ⊢ (𝜑 → (𝐵 ∖ 𝑡) ∈ 𝒫 𝐵) |
9 | 8 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑡) ∈ 𝒫 𝐵) |
10 | difeq2 3722 | . . . . . 6 ⊢ (𝑠 = (𝐵 ∖ 𝑡) → (𝐵 ∖ 𝑠) = (𝐵 ∖ (𝐵 ∖ 𝑡))) | |
11 | 10 | adantl 482 | . . . . 5 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵 ∖ 𝑡)) → (𝐵 ∖ 𝑠) = (𝐵 ∖ (𝐵 ∖ 𝑡))) |
12 | elpwi 4168 | . . . . . . 7 ⊢ (𝑡 ∈ 𝒫 𝐵 → 𝑡 ⊆ 𝐵) | |
13 | dfss4 3858 | . . . . . . 7 ⊢ (𝑡 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝑡)) = 𝑡) | |
14 | 12, 13 | sylib 208 | . . . . . 6 ⊢ (𝑡 ∈ 𝒫 𝐵 → (𝐵 ∖ (𝐵 ∖ 𝑡)) = 𝑡) |
15 | 14 | ad2antlr 763 | . . . . 5 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵 ∖ 𝑡)) → (𝐵 ∖ (𝐵 ∖ 𝑡)) = 𝑡) |
16 | 11, 15 | eqtr2d 2657 | . . . 4 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵 ∖ 𝑡)) → 𝑡 = (𝐵 ∖ 𝑠)) |
17 | 9, 16 | rspcedeq2vd 3319 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵 ∖ 𝑠)) |
18 | fveq2 6191 | . . . . . 6 ⊢ (𝑡 = (𝐵 ∖ 𝑠) → (𝐼‘𝑡) = (𝐼‘(𝐵 ∖ 𝑠))) | |
19 | 18 | eleq2d 2687 | . . . . 5 ⊢ (𝑡 = (𝐵 ∖ 𝑠) → (𝑋 ∈ (𝐼‘𝑡) ↔ 𝑋 ∈ (𝐼‘(𝐵 ∖ 𝑠)))) |
20 | 19 | 3ad2ant3 1084 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = (𝐵 ∖ 𝑠)) → (𝑋 ∈ (𝐼‘𝑡) ↔ 𝑋 ∈ (𝐼‘(𝐵 ∖ 𝑠)))) |
21 | ntrcls.o | . . . . . 6 ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑𝑚 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | |
22 | 5 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝐼𝐷𝐾) |
23 | ntrclslem0.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
24 | 23 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑋 ∈ 𝐵) |
25 | simpr 477 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵) | |
26 | 21, 4, 22, 24, 25 | ntrclselnel2 38356 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝑋 ∈ (𝐼‘(𝐵 ∖ 𝑠)) ↔ ¬ 𝑋 ∈ (𝐾‘𝑠))) |
27 | 26 | 3adant3 1081 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = (𝐵 ∖ 𝑠)) → (𝑋 ∈ (𝐼‘(𝐵 ∖ 𝑠)) ↔ ¬ 𝑋 ∈ (𝐾‘𝑠))) |
28 | 20, 27 | bitrd 268 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = (𝐵 ∖ 𝑠)) → (𝑋 ∈ (𝐼‘𝑡) ↔ ¬ 𝑋 ∈ (𝐾‘𝑠))) |
29 | 7, 17, 28 | rexxfrd2 4885 | . 2 ⊢ (𝜑 → (∃𝑡 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑡) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐾‘𝑠))) |
30 | 3, 29 | syl5bb 272 | 1 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐾‘𝑠))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 Vcvv 3200 ∖ cdif 3571 ⊆ wss 3574 𝒫 cpw 4158 class class class wbr 4653 ↦ cmpt 4729 ‘cfv 5888 (class class class)co 6650 ↑𝑚 cmap 7857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 |
This theorem is referenced by: ntrclsneine0 38363 |
Copyright terms: Public domain | W3C validator |