MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshimadifsn0 Structured version   Visualization version   GIF version

Theorem cshimadifsn0 13576
Description: The image of a cyclically shifted word under its domain without its upper bound is the image of a cyclically shifted word under its domain without the number of shifted symbols. (Contributed by AV, 19-Mar-2021.)
Assertion
Ref Expression
cshimadifsn0 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))))

Proof of Theorem cshimadifsn0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cshimadifsn 13575 . 2 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift 𝐽) “ (1..^𝑁)))
2 elfzoel2 12469 . . . . . . . 8 (𝐽 ∈ (0..^𝑁) → 𝑁 ∈ ℤ)
3 elfzom1elp1fzo1 12568 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝑦 + 1) ∈ (1..^𝑁))
43ex 450 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑦 ∈ (0..^(𝑁 − 1)) → (𝑦 + 1) ∈ (1..^𝑁)))
52, 4syl 17 . . . . . . 7 (𝐽 ∈ (0..^𝑁) → (𝑦 ∈ (0..^(𝑁 − 1)) → (𝑦 + 1) ∈ (1..^𝑁)))
653ad2ant3 1084 . . . . . 6 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝑦 ∈ (0..^(𝑁 − 1)) → (𝑦 + 1) ∈ (1..^𝑁)))
76imp 445 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝑦 + 1) ∈ (1..^𝑁))
8 elfzo1elm1fzo0 12569 . . . . . . 7 (𝑥 ∈ (1..^𝑁) → (𝑥 − 1) ∈ (0..^(𝑁 − 1)))
98adantl 482 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑥 ∈ (1..^𝑁)) → (𝑥 − 1) ∈ (0..^(𝑁 − 1)))
10 oveq1 6657 . . . . . . . 8 (𝑦 = (𝑥 − 1) → (𝑦 + 1) = ((𝑥 − 1) + 1))
1110eqeq2d 2632 . . . . . . 7 (𝑦 = (𝑥 − 1) → (𝑥 = (𝑦 + 1) ↔ 𝑥 = ((𝑥 − 1) + 1)))
1211adantl 482 . . . . . 6 ((((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑥 ∈ (1..^𝑁)) ∧ 𝑦 = (𝑥 − 1)) → (𝑥 = (𝑦 + 1) ↔ 𝑥 = ((𝑥 − 1) + 1)))
13 elfzoelz 12470 . . . . . . . . . 10 (𝑥 ∈ (1..^𝑁) → 𝑥 ∈ ℤ)
1413zcnd 11483 . . . . . . . . 9 (𝑥 ∈ (1..^𝑁) → 𝑥 ∈ ℂ)
15 npcan1 10455 . . . . . . . . 9 (𝑥 ∈ ℂ → ((𝑥 − 1) + 1) = 𝑥)
1614, 15syl 17 . . . . . . . 8 (𝑥 ∈ (1..^𝑁) → ((𝑥 − 1) + 1) = 𝑥)
1716eqcomd 2628 . . . . . . 7 (𝑥 ∈ (1..^𝑁) → 𝑥 = ((𝑥 − 1) + 1))
1817adantl 482 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑥 ∈ (1..^𝑁)) → 𝑥 = ((𝑥 − 1) + 1))
199, 12, 18rspcedvd 3317 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑥 ∈ (1..^𝑁)) → ∃𝑦 ∈ (0..^(𝑁 − 1))𝑥 = (𝑦 + 1))
20 fveq2 6191 . . . . . . . 8 (𝑥 = (𝑦 + 1) → ((𝐹 cyclShift 𝐽)‘𝑥) = ((𝐹 cyclShift 𝐽)‘(𝑦 + 1)))
21203ad2ant3 1084 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1)) ∧ 𝑥 = (𝑦 + 1)) → ((𝐹 cyclShift 𝐽)‘𝑥) = ((𝐹 cyclShift 𝐽)‘(𝑦 + 1)))
22 elfzoelz 12470 . . . . . . . . . . . . . 14 (𝑦 ∈ (0..^(𝑁 − 1)) → 𝑦 ∈ ℤ)
2322zcnd 11483 . . . . . . . . . . . . 13 (𝑦 ∈ (0..^(𝑁 − 1)) → 𝑦 ∈ ℂ)
2423adantl 482 . . . . . . . . . . . 12 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → 𝑦 ∈ ℂ)
25 elfzoelz 12470 . . . . . . . . . . . . . . 15 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ)
2625zcnd 11483 . . . . . . . . . . . . . 14 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℂ)
27263ad2ant3 1084 . . . . . . . . . . . . 13 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → 𝐽 ∈ ℂ)
2827adantr 481 . . . . . . . . . . . 12 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → 𝐽 ∈ ℂ)
29 1cnd 10056 . . . . . . . . . . . 12 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → 1 ∈ ℂ)
30 add32r 10255 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑦 + (𝐽 + 1)) = ((𝑦 + 1) + 𝐽))
3124, 28, 29, 30syl3anc 1326 . . . . . . . . . . 11 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝑦 + (𝐽 + 1)) = ((𝑦 + 1) + 𝐽))
3231oveq1d 6665 . . . . . . . . . 10 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → ((𝑦 + (𝐽 + 1)) mod (#‘𝐹)) = (((𝑦 + 1) + 𝐽) mod (#‘𝐹)))
3332fveq2d 6195 . . . . . . . . 9 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝐹‘((𝑦 + (𝐽 + 1)) mod (#‘𝐹))) = (𝐹‘(((𝑦 + 1) + 𝐽) mod (#‘𝐹))))
34 simpl1 1064 . . . . . . . . . 10 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → 𝐹 ∈ Word 𝑆)
3525peano2zd 11485 . . . . . . . . . . . 12 (𝐽 ∈ (0..^𝑁) → (𝐽 + 1) ∈ ℤ)
36353ad2ant3 1084 . . . . . . . . . . 11 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐽 + 1) ∈ ℤ)
3736adantr 481 . . . . . . . . . 10 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝐽 + 1) ∈ ℤ)
38 fzossrbm1 12497 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
392, 38syl 17 . . . . . . . . . . . . . 14 (𝐽 ∈ (0..^𝑁) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
4039sseld 3602 . . . . . . . . . . . . 13 (𝐽 ∈ (0..^𝑁) → (𝑦 ∈ (0..^(𝑁 − 1)) → 𝑦 ∈ (0..^𝑁)))
41403ad2ant3 1084 . . . . . . . . . . . 12 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝑦 ∈ (0..^(𝑁 − 1)) → 𝑦 ∈ (0..^𝑁)))
4241imp 445 . . . . . . . . . . 11 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → 𝑦 ∈ (0..^𝑁))
43 oveq2 6658 . . . . . . . . . . . . . 14 (𝑁 = (#‘𝐹) → (0..^𝑁) = (0..^(#‘𝐹)))
4443eleq2d 2687 . . . . . . . . . . . . 13 (𝑁 = (#‘𝐹) → (𝑦 ∈ (0..^𝑁) ↔ 𝑦 ∈ (0..^(#‘𝐹))))
45443ad2ant2 1083 . . . . . . . . . . . 12 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝑦 ∈ (0..^𝑁) ↔ 𝑦 ∈ (0..^(#‘𝐹))))
4645adantr 481 . . . . . . . . . . 11 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝑦 ∈ (0..^𝑁) ↔ 𝑦 ∈ (0..^(#‘𝐹))))
4742, 46mpbid 222 . . . . . . . . . 10 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → 𝑦 ∈ (0..^(#‘𝐹)))
48 cshwidxmod 13549 . . . . . . . . . 10 ((𝐹 ∈ Word 𝑆 ∧ (𝐽 + 1) ∈ ℤ ∧ 𝑦 ∈ (0..^(#‘𝐹))) → ((𝐹 cyclShift (𝐽 + 1))‘𝑦) = (𝐹‘((𝑦 + (𝐽 + 1)) mod (#‘𝐹))))
4934, 37, 47, 48syl3anc 1326 . . . . . . . . 9 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → ((𝐹 cyclShift (𝐽 + 1))‘𝑦) = (𝐹‘((𝑦 + (𝐽 + 1)) mod (#‘𝐹))))
50253ad2ant3 1084 . . . . . . . . . . 11 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → 𝐽 ∈ ℤ)
5150adantr 481 . . . . . . . . . 10 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → 𝐽 ∈ ℤ)
52 fzo0ss1 12498 . . . . . . . . . . . 12 (1..^𝑁) ⊆ (0..^𝑁)
5323ad2ant3 1084 . . . . . . . . . . . . 13 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ)
5453, 3sylan 488 . . . . . . . . . . . 12 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝑦 + 1) ∈ (1..^𝑁))
5552, 54sseldi 3601 . . . . . . . . . . 11 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝑦 + 1) ∈ (0..^𝑁))
5643eleq2d 2687 . . . . . . . . . . . . 13 (𝑁 = (#‘𝐹) → ((𝑦 + 1) ∈ (0..^𝑁) ↔ (𝑦 + 1) ∈ (0..^(#‘𝐹))))
57563ad2ant2 1083 . . . . . . . . . . . 12 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝑦 + 1) ∈ (0..^𝑁) ↔ (𝑦 + 1) ∈ (0..^(#‘𝐹))))
5857adantr 481 . . . . . . . . . . 11 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → ((𝑦 + 1) ∈ (0..^𝑁) ↔ (𝑦 + 1) ∈ (0..^(#‘𝐹))))
5955, 58mpbid 222 . . . . . . . . . 10 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝑦 + 1) ∈ (0..^(#‘𝐹)))
60 cshwidxmod 13549 . . . . . . . . . 10 ((𝐹 ∈ Word 𝑆𝐽 ∈ ℤ ∧ (𝑦 + 1) ∈ (0..^(#‘𝐹))) → ((𝐹 cyclShift 𝐽)‘(𝑦 + 1)) = (𝐹‘(((𝑦 + 1) + 𝐽) mod (#‘𝐹))))
6134, 51, 59, 60syl3anc 1326 . . . . . . . . 9 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → ((𝐹 cyclShift 𝐽)‘(𝑦 + 1)) = (𝐹‘(((𝑦 + 1) + 𝐽) mod (#‘𝐹))))
6233, 49, 613eqtr4rd 2667 . . . . . . . 8 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → ((𝐹 cyclShift 𝐽)‘(𝑦 + 1)) = ((𝐹 cyclShift (𝐽 + 1))‘𝑦))
63623adant3 1081 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1)) ∧ 𝑥 = (𝑦 + 1)) → ((𝐹 cyclShift 𝐽)‘(𝑦 + 1)) = ((𝐹 cyclShift (𝐽 + 1))‘𝑦))
6421, 63eqtrd 2656 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1)) ∧ 𝑥 = (𝑦 + 1)) → ((𝐹 cyclShift 𝐽)‘𝑥) = ((𝐹 cyclShift (𝐽 + 1))‘𝑦))
6564eqeq1d 2624 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1)) ∧ 𝑥 = (𝑦 + 1)) → (((𝐹 cyclShift 𝐽)‘𝑥) = 𝑧 ↔ ((𝐹 cyclShift (𝐽 + 1))‘𝑦) = 𝑧))
667, 19, 65rexxfrd2 4885 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (∃𝑥 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑥) = 𝑧 ↔ ∃𝑦 ∈ (0..^(𝑁 − 1))((𝐹 cyclShift (𝐽 + 1))‘𝑦) = 𝑧))
6766abbidv 2741 . . 3 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → {𝑧 ∣ ∃𝑥 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑥) = 𝑧} = {𝑧 ∣ ∃𝑦 ∈ (0..^(𝑁 − 1))((𝐹 cyclShift (𝐽 + 1))‘𝑦) = 𝑧})
6825anim2i 593 . . . . . . 7 ((𝐹 ∈ Word 𝑆𝐽 ∈ (0..^𝑁)) → (𝐹 ∈ Word 𝑆𝐽 ∈ ℤ))
69683adant2 1080 . . . . . 6 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 ∈ Word 𝑆𝐽 ∈ ℤ))
70 cshwfn 13547 . . . . . 6 ((𝐹 ∈ Word 𝑆𝐽 ∈ ℤ) → (𝐹 cyclShift 𝐽) Fn (0..^(#‘𝐹)))
7169, 70syl 17 . . . . 5 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 cyclShift 𝐽) Fn (0..^(#‘𝐹)))
72 fnfun 5988 . . . . . . 7 ((𝐹 cyclShift 𝐽) Fn (0..^(#‘𝐹)) → Fun (𝐹 cyclShift 𝐽))
7372adantl 482 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(#‘𝐹))) → Fun (𝐹 cyclShift 𝐽))
74433ad2ant2 1083 . . . . . . . . 9 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (0..^𝑁) = (0..^(#‘𝐹)))
7552, 74syl5sseq 3653 . . . . . . . 8 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (1..^𝑁) ⊆ (0..^(#‘𝐹)))
7675adantr 481 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(#‘𝐹))) → (1..^𝑁) ⊆ (0..^(#‘𝐹)))
77 fndm 5990 . . . . . . . 8 ((𝐹 cyclShift 𝐽) Fn (0..^(#‘𝐹)) → dom (𝐹 cyclShift 𝐽) = (0..^(#‘𝐹)))
7877adantl 482 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(#‘𝐹))) → dom (𝐹 cyclShift 𝐽) = (0..^(#‘𝐹)))
7976, 78sseqtr4d 3642 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(#‘𝐹))) → (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽))
8073, 79jca 554 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(#‘𝐹))) → (Fun (𝐹 cyclShift 𝐽) ∧ (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽)))
8171, 80mpdan 702 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (Fun (𝐹 cyclShift 𝐽) ∧ (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽)))
82 dfimafn 6245 . . . 4 ((Fun (𝐹 cyclShift 𝐽) ∧ (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽)) → ((𝐹 cyclShift 𝐽) “ (1..^𝑁)) = {𝑧 ∣ ∃𝑥 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑥) = 𝑧})
8381, 82syl 17 . . 3 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐹 cyclShift 𝐽) “ (1..^𝑁)) = {𝑧 ∣ ∃𝑥 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑥) = 𝑧})
8435anim2i 593 . . . . . . 7 ((𝐹 ∈ Word 𝑆𝐽 ∈ (0..^𝑁)) → (𝐹 ∈ Word 𝑆 ∧ (𝐽 + 1) ∈ ℤ))
85843adant2 1080 . . . . . 6 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 ∈ Word 𝑆 ∧ (𝐽 + 1) ∈ ℤ))
86 cshwfn 13547 . . . . . 6 ((𝐹 ∈ Word 𝑆 ∧ (𝐽 + 1) ∈ ℤ) → (𝐹 cyclShift (𝐽 + 1)) Fn (0..^(#‘𝐹)))
8785, 86syl 17 . . . . 5 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 cyclShift (𝐽 + 1)) Fn (0..^(#‘𝐹)))
88 fnfun 5988 . . . . . . 7 ((𝐹 cyclShift (𝐽 + 1)) Fn (0..^(#‘𝐹)) → Fun (𝐹 cyclShift (𝐽 + 1)))
8988adantl 482 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift (𝐽 + 1)) Fn (0..^(#‘𝐹))) → Fun (𝐹 cyclShift (𝐽 + 1)))
90393ad2ant3 1084 . . . . . . . . 9 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
91 oveq2 6658 . . . . . . . . . . 11 ((#‘𝐹) = 𝑁 → (0..^(#‘𝐹)) = (0..^𝑁))
9291eqcoms 2630 . . . . . . . . . 10 (𝑁 = (#‘𝐹) → (0..^(#‘𝐹)) = (0..^𝑁))
93923ad2ant2 1083 . . . . . . . . 9 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (0..^(#‘𝐹)) = (0..^𝑁))
9490, 93sseqtr4d 3642 . . . . . . . 8 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (0..^(𝑁 − 1)) ⊆ (0..^(#‘𝐹)))
9594adantr 481 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift (𝐽 + 1)) Fn (0..^(#‘𝐹))) → (0..^(𝑁 − 1)) ⊆ (0..^(#‘𝐹)))
96 fndm 5990 . . . . . . . 8 ((𝐹 cyclShift (𝐽 + 1)) Fn (0..^(#‘𝐹)) → dom (𝐹 cyclShift (𝐽 + 1)) = (0..^(#‘𝐹)))
9796adantl 482 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift (𝐽 + 1)) Fn (0..^(#‘𝐹))) → dom (𝐹 cyclShift (𝐽 + 1)) = (0..^(#‘𝐹)))
9895, 97sseqtr4d 3642 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift (𝐽 + 1)) Fn (0..^(#‘𝐹))) → (0..^(𝑁 − 1)) ⊆ dom (𝐹 cyclShift (𝐽 + 1)))
9989, 98jca 554 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift (𝐽 + 1)) Fn (0..^(#‘𝐹))) → (Fun (𝐹 cyclShift (𝐽 + 1)) ∧ (0..^(𝑁 − 1)) ⊆ dom (𝐹 cyclShift (𝐽 + 1))))
10087, 99mpdan 702 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (Fun (𝐹 cyclShift (𝐽 + 1)) ∧ (0..^(𝑁 − 1)) ⊆ dom (𝐹 cyclShift (𝐽 + 1))))
101 dfimafn 6245 . . . 4 ((Fun (𝐹 cyclShift (𝐽 + 1)) ∧ (0..^(𝑁 − 1)) ⊆ dom (𝐹 cyclShift (𝐽 + 1))) → ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))) = {𝑧 ∣ ∃𝑦 ∈ (0..^(𝑁 − 1))((𝐹 cyclShift (𝐽 + 1))‘𝑦) = 𝑧})
102100, 101syl 17 . . 3 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))) = {𝑧 ∣ ∃𝑦 ∈ (0..^(𝑁 − 1))((𝐹 cyclShift (𝐽 + 1))‘𝑦) = 𝑧})
10367, 83, 1023eqtr4d 2666 . 2 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐹 cyclShift 𝐽) “ (1..^𝑁)) = ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))))
1041, 103eqtrd 2656 1 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {cab 2608  wrex 2913  cdif 3571  wss 3574  {csn 4177  dom cdm 5114  cima 5117  Fun wfun 5882   Fn wfn 5883  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   + caddc 9939  cmin 10266  cz 11377  ..^cfzo 12465   mod cmo 12668  #chash 13117  Word cword 13291   cyclShift ccsh 13534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-csh 13535
This theorem is referenced by:  eucrct2eupth  27105
  Copyright terms: Public domain W3C validator