MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshimadifsn Structured version   Visualization version   GIF version

Theorem cshimadifsn 13575
Description: The image of a cyclically shifted word under its domain without its left bound is the image of a cyclically shifted word under its domain without the number of shifted symbols. (Contributed by AV, 19-Mar-2021.)
Assertion
Ref Expression
cshimadifsn ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift 𝐽) “ (1..^𝑁)))

Proof of Theorem cshimadifsn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wrdfn 13319 . . . . . 6 (𝐹 ∈ Word 𝑆𝐹 Fn (0..^(#‘𝐹)))
2 fnfun 5988 . . . . . 6 (𝐹 Fn (0..^(#‘𝐹)) → Fun 𝐹)
31, 2syl 17 . . . . 5 (𝐹 ∈ Word 𝑆 → Fun 𝐹)
433ad2ant1 1082 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → Fun 𝐹)
5 wrddm 13312 . . . . . 6 (𝐹 ∈ Word 𝑆 → dom 𝐹 = (0..^(#‘𝐹)))
6 difssd 3738 . . . . . . . . 9 ((dom 𝐹 = (0..^(#‘𝐹)) ∧ 𝑁 = (#‘𝐹)) → ((0..^(#‘𝐹)) ∖ {𝐽}) ⊆ (0..^(#‘𝐹)))
7 oveq2 6658 . . . . . . . . . . 11 (𝑁 = (#‘𝐹) → (0..^𝑁) = (0..^(#‘𝐹)))
87difeq1d 3727 . . . . . . . . . 10 (𝑁 = (#‘𝐹) → ((0..^𝑁) ∖ {𝐽}) = ((0..^(#‘𝐹)) ∖ {𝐽}))
98adantl 482 . . . . . . . . 9 ((dom 𝐹 = (0..^(#‘𝐹)) ∧ 𝑁 = (#‘𝐹)) → ((0..^𝑁) ∖ {𝐽}) = ((0..^(#‘𝐹)) ∖ {𝐽}))
10 simpl 473 . . . . . . . . 9 ((dom 𝐹 = (0..^(#‘𝐹)) ∧ 𝑁 = (#‘𝐹)) → dom 𝐹 = (0..^(#‘𝐹)))
116, 9, 103sstr4d 3648 . . . . . . . 8 ((dom 𝐹 = (0..^(#‘𝐹)) ∧ 𝑁 = (#‘𝐹)) → ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹)
1211a1d 25 . . . . . . 7 ((dom 𝐹 = (0..^(#‘𝐹)) ∧ 𝑁 = (#‘𝐹)) → (𝐽 ∈ (0..^𝑁) → ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹))
1312ex 450 . . . . . 6 (dom 𝐹 = (0..^(#‘𝐹)) → (𝑁 = (#‘𝐹) → (𝐽 ∈ (0..^𝑁) → ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹)))
145, 13syl 17 . . . . 5 (𝐹 ∈ Word 𝑆 → (𝑁 = (#‘𝐹) → (𝐽 ∈ (0..^𝑁) → ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹)))
15143imp 1256 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹)
164, 15jca 554 . . 3 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (Fun 𝐹 ∧ ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹))
17 dfimafn 6245 . . 3 ((Fun 𝐹 ∧ ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = {𝑧 ∣ ∃𝑥 ∈ ((0..^𝑁) ∖ {𝐽})(𝐹𝑥) = 𝑧})
1816, 17syl 17 . 2 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = {𝑧 ∣ ∃𝑥 ∈ ((0..^𝑁) ∖ {𝐽})(𝐹𝑥) = 𝑧})
19 modsumfzodifsn 12743 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝑦 ∈ (1..^𝑁)) → ((𝑦 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))
20193ad2antl3 1225 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → ((𝑦 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))
21 oveq2 6658 . . . . . . . . . 10 ((#‘𝐹) = 𝑁 → ((𝑦 + 𝐽) mod (#‘𝐹)) = ((𝑦 + 𝐽) mod 𝑁))
2221eqcoms 2630 . . . . . . . . 9 (𝑁 = (#‘𝐹) → ((𝑦 + 𝐽) mod (#‘𝐹)) = ((𝑦 + 𝐽) mod 𝑁))
2322eleq1d 2686 . . . . . . . 8 (𝑁 = (#‘𝐹) → (((𝑦 + 𝐽) mod (#‘𝐹)) ∈ ((0..^𝑁) ∖ {𝐽}) ↔ ((𝑦 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽})))
24233ad2ant2 1083 . . . . . . 7 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (((𝑦 + 𝐽) mod (#‘𝐹)) ∈ ((0..^𝑁) ∖ {𝐽}) ↔ ((𝑦 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽})))
2524adantr 481 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → (((𝑦 + 𝐽) mod (#‘𝐹)) ∈ ((0..^𝑁) ∖ {𝐽}) ↔ ((𝑦 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽})))
2620, 25mpbird 247 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → ((𝑦 + 𝐽) mod (#‘𝐹)) ∈ ((0..^𝑁) ∖ {𝐽}))
27 modfzo0difsn 12742 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝑥 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod 𝑁))
28273ad2antl3 1225 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod 𝑁))
29 oveq2 6658 . . . . . . . . . . 11 (𝑁 = (#‘𝐹) → ((𝑦 + 𝐽) mod 𝑁) = ((𝑦 + 𝐽) mod (#‘𝐹)))
3029eqcomd 2628 . . . . . . . . . 10 (𝑁 = (#‘𝐹) → ((𝑦 + 𝐽) mod (#‘𝐹)) = ((𝑦 + 𝐽) mod 𝑁))
3130eqeq2d 2632 . . . . . . . . 9 (𝑁 = (#‘𝐹) → (𝑥 = ((𝑦 + 𝐽) mod (#‘𝐹)) ↔ 𝑥 = ((𝑦 + 𝐽) mod 𝑁)))
3231rexbidv 3052 . . . . . . . 8 (𝑁 = (#‘𝐹) → (∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod (#‘𝐹)) ↔ ∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod 𝑁)))
33323ad2ant2 1083 . . . . . . 7 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod (#‘𝐹)) ↔ ∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod 𝑁)))
3433adantr 481 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ((0..^𝑁) ∖ {𝐽})) → (∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod (#‘𝐹)) ↔ ∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod 𝑁)))
3528, 34mpbird 247 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod (#‘𝐹)))
36 fveq2 6191 . . . . . . . 8 (𝑥 = ((𝑦 + 𝐽) mod (#‘𝐹)) → (𝐹𝑥) = (𝐹‘((𝑦 + 𝐽) mod (#‘𝐹))))
37363ad2ant3 1084 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 = ((𝑦 + 𝐽) mod (#‘𝐹))) → (𝐹𝑥) = (𝐹‘((𝑦 + 𝐽) mod (#‘𝐹))))
38 simpl1 1064 . . . . . . . . 9 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → 𝐹 ∈ Word 𝑆)
39 elfzoelz 12470 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ)
40393ad2ant3 1084 . . . . . . . . . 10 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → 𝐽 ∈ ℤ)
4140adantr 481 . . . . . . . . 9 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → 𝐽 ∈ ℤ)
42 oveq2 6658 . . . . . . . . . . . . 13 (𝑁 = (#‘𝐹) → (1..^𝑁) = (1..^(#‘𝐹)))
4342eleq2d 2687 . . . . . . . . . . . 12 (𝑁 = (#‘𝐹) → (𝑦 ∈ (1..^𝑁) ↔ 𝑦 ∈ (1..^(#‘𝐹))))
44 fzo0ss1 12498 . . . . . . . . . . . . 13 (1..^(#‘𝐹)) ⊆ (0..^(#‘𝐹))
4544sseli 3599 . . . . . . . . . . . 12 (𝑦 ∈ (1..^(#‘𝐹)) → 𝑦 ∈ (0..^(#‘𝐹)))
4643, 45syl6bi 243 . . . . . . . . . . 11 (𝑁 = (#‘𝐹) → (𝑦 ∈ (1..^𝑁) → 𝑦 ∈ (0..^(#‘𝐹))))
47463ad2ant2 1083 . . . . . . . . . 10 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝑦 ∈ (1..^𝑁) → 𝑦 ∈ (0..^(#‘𝐹))))
4847imp 445 . . . . . . . . 9 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → 𝑦 ∈ (0..^(#‘𝐹)))
49 cshwidxmod 13549 . . . . . . . . . 10 ((𝐹 ∈ Word 𝑆𝐽 ∈ ℤ ∧ 𝑦 ∈ (0..^(#‘𝐹))) → ((𝐹 cyclShift 𝐽)‘𝑦) = (𝐹‘((𝑦 + 𝐽) mod (#‘𝐹))))
5049eqcomd 2628 . . . . . . . . 9 ((𝐹 ∈ Word 𝑆𝐽 ∈ ℤ ∧ 𝑦 ∈ (0..^(#‘𝐹))) → (𝐹‘((𝑦 + 𝐽) mod (#‘𝐹))) = ((𝐹 cyclShift 𝐽)‘𝑦))
5138, 41, 48, 50syl3anc 1326 . . . . . . . 8 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → (𝐹‘((𝑦 + 𝐽) mod (#‘𝐹))) = ((𝐹 cyclShift 𝐽)‘𝑦))
52513adant3 1081 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 = ((𝑦 + 𝐽) mod (#‘𝐹))) → (𝐹‘((𝑦 + 𝐽) mod (#‘𝐹))) = ((𝐹 cyclShift 𝐽)‘𝑦))
5337, 52eqtrd 2656 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 = ((𝑦 + 𝐽) mod (#‘𝐹))) → (𝐹𝑥) = ((𝐹 cyclShift 𝐽)‘𝑦))
5453eqeq1d 2624 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 = ((𝑦 + 𝐽) mod (#‘𝐹))) → ((𝐹𝑥) = 𝑧 ↔ ((𝐹 cyclShift 𝐽)‘𝑦) = 𝑧))
5526, 35, 54rexxfrd2 4885 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (∃𝑥 ∈ ((0..^𝑁) ∖ {𝐽})(𝐹𝑥) = 𝑧 ↔ ∃𝑦 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑦) = 𝑧))
5655abbidv 2741 . . 3 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → {𝑧 ∣ ∃𝑥 ∈ ((0..^𝑁) ∖ {𝐽})(𝐹𝑥) = 𝑧} = {𝑧 ∣ ∃𝑦 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑦) = 𝑧})
5739anim2i 593 . . . . . . . 8 ((𝐹 ∈ Word 𝑆𝐽 ∈ (0..^𝑁)) → (𝐹 ∈ Word 𝑆𝐽 ∈ ℤ))
58573adant2 1080 . . . . . . 7 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 ∈ Word 𝑆𝐽 ∈ ℤ))
59 cshwfn 13547 . . . . . . 7 ((𝐹 ∈ Word 𝑆𝐽 ∈ ℤ) → (𝐹 cyclShift 𝐽) Fn (0..^(#‘𝐹)))
6058, 59syl 17 . . . . . 6 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 cyclShift 𝐽) Fn (0..^(#‘𝐹)))
61 fnfun 5988 . . . . . . . 8 ((𝐹 cyclShift 𝐽) Fn (0..^(#‘𝐹)) → Fun (𝐹 cyclShift 𝐽))
6261adantl 482 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(#‘𝐹))) → Fun (𝐹 cyclShift 𝐽))
6342, 44syl6eqss 3655 . . . . . . . . . 10 (𝑁 = (#‘𝐹) → (1..^𝑁) ⊆ (0..^(#‘𝐹)))
64633ad2ant2 1083 . . . . . . . . 9 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (1..^𝑁) ⊆ (0..^(#‘𝐹)))
6564adantr 481 . . . . . . . 8 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(#‘𝐹))) → (1..^𝑁) ⊆ (0..^(#‘𝐹)))
66 fndm 5990 . . . . . . . . 9 ((𝐹 cyclShift 𝐽) Fn (0..^(#‘𝐹)) → dom (𝐹 cyclShift 𝐽) = (0..^(#‘𝐹)))
6766adantl 482 . . . . . . . 8 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(#‘𝐹))) → dom (𝐹 cyclShift 𝐽) = (0..^(#‘𝐹)))
6865, 67sseqtr4d 3642 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(#‘𝐹))) → (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽))
6962, 68jca 554 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(#‘𝐹))) → (Fun (𝐹 cyclShift 𝐽) ∧ (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽)))
7060, 69mpdan 702 . . . . 5 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (Fun (𝐹 cyclShift 𝐽) ∧ (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽)))
71 dfimafn 6245 . . . . 5 ((Fun (𝐹 cyclShift 𝐽) ∧ (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽)) → ((𝐹 cyclShift 𝐽) “ (1..^𝑁)) = {𝑧 ∣ ∃𝑦 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑦) = 𝑧})
7270, 71syl 17 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐹 cyclShift 𝐽) “ (1..^𝑁)) = {𝑧 ∣ ∃𝑦 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑦) = 𝑧})
7372eqcomd 2628 . . 3 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → {𝑧 ∣ ∃𝑦 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑦) = 𝑧} = ((𝐹 cyclShift 𝐽) “ (1..^𝑁)))
7456, 73eqtrd 2656 . 2 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → {𝑧 ∣ ∃𝑥 ∈ ((0..^𝑁) ∖ {𝐽})(𝐹𝑥) = 𝑧} = ((𝐹 cyclShift 𝐽) “ (1..^𝑁)))
7518, 74eqtrd 2656 1 ((𝐹 ∈ Word 𝑆𝑁 = (#‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift 𝐽) “ (1..^𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {cab 2608  wrex 2913  cdif 3571  wss 3574  {csn 4177  dom cdm 5114  cima 5117  Fun wfun 5882   Fn wfn 5883  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939  cz 11377  ..^cfzo 12465   mod cmo 12668  #chash 13117  Word cword 13291   cyclShift ccsh 13534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-csh 13535
This theorem is referenced by:  cshimadifsn0  13576
  Copyright terms: Public domain W3C validator