Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotasv Structured version   Visualization version   GIF version

Theorem riotasv 34245
Description: Value of description binder 𝐷 for a single-valued class expression 𝐶(𝑦) (as in e.g. reusv2 4874). Special case of riota2f 6632. (Contributed by NM, 26-Jan-2013.) (Proof shortened by Mario Carneiro, 6-Dec-2016.)
Hypotheses
Ref Expression
riotasv.1 𝐴 ∈ V
riotasv.2 𝐷 = (𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))
Assertion
Ref Expression
riotasv ((𝐷𝐴𝑦𝐵𝜑) → 𝐷 = 𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐵(𝑦)   𝐶(𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem riotasv
StepHypRef Expression
1 riotasv.1 . . 3 𝐴 ∈ V
2 riotasv.2 . . . . 5 𝐷 = (𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))
32a1i 11 . . . 4 (𝐷𝐴𝐷 = (𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
4 id 22 . . . 4 (𝐷𝐴𝐷𝐴)
53, 4riotasvd 34242 . . 3 ((𝐷𝐴𝐴 ∈ V) → ((𝑦𝐵𝜑) → 𝐷 = 𝐶))
61, 5mpan2 707 . 2 (𝐷𝐴 → ((𝑦𝐵𝜑) → 𝐷 = 𝐶))
763impib 1262 1 ((𝐷𝐴𝑦𝐵𝜑) → 𝐷 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  crio 6610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-riota 6611  df-undef 7399
This theorem is referenced by:  cdleme26e  35647  cdleme26eALTN  35649  cdleme26fALTN  35650  cdleme26f  35651  cdleme26f2ALTN  35652  cdleme26f2  35653
  Copyright terms: Public domain W3C validator