Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotasv2s Structured version   Visualization version   GIF version

Theorem riotasv2s 34244
Description: The value of description binder 𝐷 for a single-valued class expression 𝐶(𝑦) (as in e.g. reusv2 4874) in the form of a substitution instance. Special case of riota2f 6632. (Contributed by NM, 3-Mar-2013.) (Proof shortened by Mario Carneiro, 6-Dec-2016.)
Hypothesis
Ref Expression
riotasv2s.2 𝐷 = (𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))
Assertion
Ref Expression
riotasv2s ((𝐴𝑉𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝐷 = 𝐸 / 𝑦𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶   𝑥,𝐸,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐶(𝑦)   𝐷(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem riotasv2s
StepHypRef Expression
1 3simpc 1060 . 2 ((𝐴𝑉𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → (𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)))
2 simp1 1061 . 2 ((𝐴𝑉𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝐴𝑉)
3 riotasv2s.2 . . . . . 6 𝐷 = (𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))
4 nfra1 2941 . . . . . . 7 𝑦𝑦𝐵 (𝜑𝑥 = 𝐶)
5 nfcv 2764 . . . . . . 7 𝑦𝐴
64, 5nfriota 6620 . . . . . 6 𝑦(𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))
73, 6nfcxfr 2762 . . . . 5 𝑦𝐷
87nfel1 2779 . . . 4 𝑦 𝐷𝐴
9 nfv 1843 . . . . 5 𝑦 𝐸𝐵
10 nfsbc1v 3455 . . . . 5 𝑦[𝐸 / 𝑦]𝜑
119, 10nfan 1828 . . . 4 𝑦(𝐸𝐵[𝐸 / 𝑦]𝜑)
128, 11nfan 1828 . . 3 𝑦(𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑))
13 nfcsb1v 3549 . . . 4 𝑦𝐸 / 𝑦𝐶
1413a1i 11 . . 3 ((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝑦𝐸 / 𝑦𝐶)
1510a1i 11 . . 3 ((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → Ⅎ𝑦[𝐸 / 𝑦]𝜑)
163a1i 11 . . 3 ((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝐷 = (𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶)))
17 sbceq1a 3446 . . . 4 (𝑦 = 𝐸 → (𝜑[𝐸 / 𝑦]𝜑))
1817adantl 482 . . 3 (((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) ∧ 𝑦 = 𝐸) → (𝜑[𝐸 / 𝑦]𝜑))
19 csbeq1a 3542 . . . 4 (𝑦 = 𝐸𝐶 = 𝐸 / 𝑦𝐶)
2019adantl 482 . . 3 (((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) ∧ 𝑦 = 𝐸) → 𝐶 = 𝐸 / 𝑦𝐶)
21 simpl 473 . . 3 ((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝐷𝐴)
22 simprl 794 . . 3 ((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝐸𝐵)
23 simprr 796 . . 3 ((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → [𝐸 / 𝑦]𝜑)
2412, 14, 15, 16, 18, 20, 21, 22, 23riotasv2d 34243 . 2 (((𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) ∧ 𝐴𝑉) → 𝐷 = 𝐸 / 𝑦𝐶)
251, 2, 24syl2anc 693 1 ((𝐴𝑉𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝐷 = 𝐸 / 𝑦𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wnf 1708  wcel 1990  wnfc 2751  wral 2912  [wsbc 3435  csb 3533  crio 6610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-riota 6611  df-undef 7399
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator