Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptbd2lem Structured version   Visualization version   GIF version

Theorem rnmptbd2lem 39463
Description: Boundness below of the range of a function in map-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rnmptbd2lem.x 𝑥𝜑
rnmptbd2lem.b ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
rnmptbd2lem (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝜑,𝑦,𝑧   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem rnmptbd2lem
StepHypRef Expression
1 vex 3203 . . . . . . . . . . 11 𝑧 ∈ V
2 eqid 2622 . . . . . . . . . . . 12 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
32elrnmpt 5372 . . . . . . . . . . 11 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵))
41, 3ax-mp 5 . . . . . . . . . 10 (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵)
54biimpi 206 . . . . . . . . 9 (𝑧 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑧 = 𝐵)
65adantl 482 . . . . . . . 8 (((𝜑 ∧ ∀𝑥𝐴 𝑦𝐵) ∧ 𝑧 ∈ ran (𝑥𝐴𝐵)) → ∃𝑥𝐴 𝑧 = 𝐵)
7 nfra1 2941 . . . . . . . . . . 11 𝑥𝑥𝐴 𝑦𝐵
8 nfv 1843 . . . . . . . . . . 11 𝑥 𝑦𝑧
9 rspa 2930 . . . . . . . . . . . . 13 ((∀𝑥𝐴 𝑦𝐵𝑥𝐴) → 𝑦𝐵)
10 simpl 473 . . . . . . . . . . . . . . 15 ((𝑦𝐵𝑧 = 𝐵) → 𝑦𝐵)
11 id 22 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝐵𝑧 = 𝐵)
1211eqcomd 2628 . . . . . . . . . . . . . . . 16 (𝑧 = 𝐵𝐵 = 𝑧)
1312adantl 482 . . . . . . . . . . . . . . 15 ((𝑦𝐵𝑧 = 𝐵) → 𝐵 = 𝑧)
1410, 13breqtrd 4679 . . . . . . . . . . . . . 14 ((𝑦𝐵𝑧 = 𝐵) → 𝑦𝑧)
1514ex 450 . . . . . . . . . . . . 13 (𝑦𝐵 → (𝑧 = 𝐵𝑦𝑧))
169, 15syl 17 . . . . . . . . . . . 12 ((∀𝑥𝐴 𝑦𝐵𝑥𝐴) → (𝑧 = 𝐵𝑦𝑧))
1716ex 450 . . . . . . . . . . 11 (∀𝑥𝐴 𝑦𝐵 → (𝑥𝐴 → (𝑧 = 𝐵𝑦𝑧)))
187, 8, 17rexlimd 3026 . . . . . . . . . 10 (∀𝑥𝐴 𝑦𝐵 → (∃𝑥𝐴 𝑧 = 𝐵𝑦𝑧))
1918imp 445 . . . . . . . . 9 ((∀𝑥𝐴 𝑦𝐵 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → 𝑦𝑧)
2019adantll 750 . . . . . . . 8 (((𝜑 ∧ ∀𝑥𝐴 𝑦𝐵) ∧ ∃𝑥𝐴 𝑧 = 𝐵) → 𝑦𝑧)
216, 20syldan 487 . . . . . . 7 (((𝜑 ∧ ∀𝑥𝐴 𝑦𝐵) ∧ 𝑧 ∈ ran (𝑥𝐴𝐵)) → 𝑦𝑧)
2221ralrimiva 2966 . . . . . 6 ((𝜑 ∧ ∀𝑥𝐴 𝑦𝐵) → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧)
2322ex 450 . . . . 5 (𝜑 → (∀𝑥𝐴 𝑦𝐵 → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧))
2423reximdv 3016 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧))
2524imp 445 . . 3 ((𝜑 ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧)
2625ex 450 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧))
27 rnmptbd2lem.x . . . . . . . 8 𝑥𝜑
28 nfmpt1 4747 . . . . . . . . . 10 𝑥(𝑥𝐴𝐵)
2928nfrn 5368 . . . . . . . . 9 𝑥ran (𝑥𝐴𝐵)
3029, 8nfral 2945 . . . . . . . 8 𝑥𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧
3127, 30nfan 1828 . . . . . . 7 𝑥(𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧)
32 simpr 477 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧) ∧ 𝑥𝐴) → 𝑥𝐴)
33 rnmptbd2lem.b . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵𝑉)
3433adantlr 751 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧) ∧ 𝑥𝐴) → 𝐵𝑉)
352elrnmpt1 5374 . . . . . . . . . 10 ((𝑥𝐴𝐵𝑉) → 𝐵 ∈ ran (𝑥𝐴𝐵))
3632, 34, 35syl2anc 693 . . . . . . . . 9 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧) ∧ 𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
37 simplr 792 . . . . . . . . 9 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧) ∧ 𝑥𝐴) → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧)
38 breq2 4657 . . . . . . . . . 10 (𝑧 = 𝐵 → (𝑦𝑧𝑦𝐵))
3938rspcva 3307 . . . . . . . . 9 ((𝐵 ∈ ran (𝑥𝐴𝐵) ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧) → 𝑦𝐵)
4036, 37, 39syl2anc 693 . . . . . . . 8 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧) ∧ 𝑥𝐴) → 𝑦𝐵)
4140ex 450 . . . . . . 7 ((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧) → (𝑥𝐴𝑦𝐵))
4231, 41ralrimi 2957 . . . . . 6 ((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧) → ∀𝑥𝐴 𝑦𝐵)
4342ex 450 . . . . 5 (𝜑 → (∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧 → ∀𝑥𝐴 𝑦𝐵))
4443a1d 25 . . . 4 (𝜑 → (𝑦 ∈ ℝ → (∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧 → ∀𝑥𝐴 𝑦𝐵)))
4544imp 445 . . 3 ((𝜑𝑦 ∈ ℝ) → (∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧 → ∀𝑥𝐴 𝑦𝐵))
4645reximdva 3017 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵))
4726, 46impbid 202 1 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wnf 1708  wcel 1990  wral 2912  wrex 2913  Vcvv 3200   class class class wbr 4653  cmpt 4729  ran crn 5115  cr 9935  cle 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-mpt 4730  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by:  rnmptbd2  39464
  Copyright terms: Public domain W3C validator