Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptbddlem Structured version   Visualization version   GIF version

Theorem rnmptbddlem 39455
Description: Boundness of the range of a function in map-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rnmptbddlem.x 𝑥𝜑
rnmptbddlem.b (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
Assertion
Ref Expression
rnmptbddlem (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝜑,𝑦,𝑧   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem rnmptbddlem
StepHypRef Expression
1 rnmptbddlem.b . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
2 vex 3203 . . . . . . . . 9 𝑧 ∈ V
3 eqid 2622 . . . . . . . . . 10 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43elrnmpt 5372 . . . . . . . . 9 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵))
52, 4ax-mp 5 . . . . . . . 8 (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵)
65biimpi 206 . . . . . . 7 (𝑧 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑧 = 𝐵)
76adantl 482 . . . . . 6 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑧 ∈ ran (𝑥𝐴𝐵)) → ∃𝑥𝐴 𝑧 = 𝐵)
8 rnmptbddlem.x . . . . . . . . . 10 𝑥𝜑
9 nfv 1843 . . . . . . . . . 10 𝑥 𝑦 ∈ ℝ
108, 9nfan 1828 . . . . . . . . 9 𝑥(𝜑𝑦 ∈ ℝ)
11 nfra1 2941 . . . . . . . . 9 𝑥𝑥𝐴 𝐵𝑦
1210, 11nfan 1828 . . . . . . . 8 𝑥((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑦)
13 nfv 1843 . . . . . . . 8 𝑥 𝑧𝑦
14 rspa 2930 . . . . . . . . . . . 12 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴) → 𝐵𝑦)
15143adant3 1081 . . . . . . . . . . 11 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵) → 𝐵𝑦)
16 simp3 1063 . . . . . . . . . . 11 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵) → 𝑧 = 𝐵)
17 simpr 477 . . . . . . . . . . . 12 ((𝐵𝑦𝑧 = 𝐵) → 𝑧 = 𝐵)
18 simpl 473 . . . . . . . . . . . 12 ((𝐵𝑦𝑧 = 𝐵) → 𝐵𝑦)
1917, 18eqbrtrd 4675 . . . . . . . . . . 11 ((𝐵𝑦𝑧 = 𝐵) → 𝑧𝑦)
2015, 16, 19syl2anc 693 . . . . . . . . . 10 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵) → 𝑧𝑦)
21203exp 1264 . . . . . . . . 9 (∀𝑥𝐴 𝐵𝑦 → (𝑥𝐴 → (𝑧 = 𝐵𝑧𝑦)))
2221adantl 482 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑦) → (𝑥𝐴 → (𝑧 = 𝐵𝑧𝑦)))
2312, 13, 22rexlimd 3026 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑦) → (∃𝑥𝐴 𝑧 = 𝐵𝑧𝑦))
2423imp 445 . . . . . 6 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑦) ∧ ∃𝑥𝐴 𝑧 = 𝐵) → 𝑧𝑦)
257, 24syldan 487 . . . . 5 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑧 ∈ ran (𝑥𝐴𝐵)) → 𝑧𝑦)
2625ralrimiva 2966 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑦) → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
2726ex 450 . . 3 ((𝜑𝑦 ∈ ℝ) → (∀𝑥𝐴 𝐵𝑦 → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
2827reximdva 3017 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
291, 28mpd 15 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wnf 1708  wcel 1990  wral 2912  wrex 2913  Vcvv 3200   class class class wbr 4653  cmpt 4729  ran crn 5115  cr 9935  cle 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-mpt 4730  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by:  rnmptbdd  39456
  Copyright terms: Public domain W3C validator