Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptpr Structured version   Visualization version   GIF version

Theorem rnmptpr 39358
Description: Range of a function defined on an unordered pair. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
rnmptpr.a (𝜑𝐴𝑉)
rnmptpr.b (𝜑𝐵𝑊)
rnmptpr.f 𝐹 = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐶)
rnmptpr.d (𝑥 = 𝐴𝐶 = 𝐷)
rnmptpr.e (𝑥 = 𝐵𝐶 = 𝐸)
Assertion
Ref Expression
rnmptpr (𝜑 → ran 𝐹 = {𝐷, 𝐸})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐹(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem rnmptpr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . . . 6 𝑦 ∈ V
2 rnmptpr.f . . . . . . 7 𝐹 = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐶)
32elrnmpt 5372 . . . . . 6 (𝑦 ∈ V → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ {𝐴, 𝐵}𝑦 = 𝐶))
41, 3ax-mp 5 . . . . 5 (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ {𝐴, 𝐵}𝑦 = 𝐶)
54a1i 11 . . . 4 (𝜑 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ {𝐴, 𝐵}𝑦 = 𝐶))
6 rnmptpr.a . . . . 5 (𝜑𝐴𝑉)
7 rnmptpr.b . . . . 5 (𝜑𝐵𝑊)
8 rnmptpr.d . . . . . . 7 (𝑥 = 𝐴𝐶 = 𝐷)
98eqeq2d 2632 . . . . . 6 (𝑥 = 𝐴 → (𝑦 = 𝐶𝑦 = 𝐷))
10 rnmptpr.e . . . . . . 7 (𝑥 = 𝐵𝐶 = 𝐸)
1110eqeq2d 2632 . . . . . 6 (𝑥 = 𝐵 → (𝑦 = 𝐶𝑦 = 𝐸))
129, 11rexprg 4235 . . . . 5 ((𝐴𝑉𝐵𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝑦 = 𝐶 ↔ (𝑦 = 𝐷𝑦 = 𝐸)))
136, 7, 12syl2anc 693 . . . 4 (𝜑 → (∃𝑥 ∈ {𝐴, 𝐵}𝑦 = 𝐶 ↔ (𝑦 = 𝐷𝑦 = 𝐸)))
141elpr 4198 . . . . . 6 (𝑦 ∈ {𝐷, 𝐸} ↔ (𝑦 = 𝐷𝑦 = 𝐸))
1514bicomi 214 . . . . 5 ((𝑦 = 𝐷𝑦 = 𝐸) ↔ 𝑦 ∈ {𝐷, 𝐸})
1615a1i 11 . . . 4 (𝜑 → ((𝑦 = 𝐷𝑦 = 𝐸) ↔ 𝑦 ∈ {𝐷, 𝐸}))
175, 13, 163bitrd 294 . . 3 (𝜑 → (𝑦 ∈ ran 𝐹𝑦 ∈ {𝐷, 𝐸}))
1817alrimiv 1855 . 2 (𝜑 → ∀𝑦(𝑦 ∈ ran 𝐹𝑦 ∈ {𝐷, 𝐸}))
19 dfcleq 2616 . 2 (ran 𝐹 = {𝐷, 𝐸} ↔ ∀𝑦(𝑦 ∈ ran 𝐹𝑦 ∈ {𝐷, 𝐸}))
2018, 19sylibr 224 1 (𝜑 → ran 𝐹 = {𝐷, 𝐸})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wal 1481   = wceq 1483  wcel 1990  wrex 2913  Vcvv 3200  {cpr 4179  cmpt 4729  ran crn 5115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-mpt 4730  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by:  sge0pr  40611
  Copyright terms: Public domain W3C validator