Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptpr Structured version   Visualization version   Unicode version

Theorem rnmptpr 39358
Description: Range of a function defined on an unordered pair. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
rnmptpr.a  |-  ( ph  ->  A  e.  V )
rnmptpr.b  |-  ( ph  ->  B  e.  W )
rnmptpr.f  |-  F  =  ( x  e.  { A ,  B }  |->  C )
rnmptpr.d  |-  ( x  =  A  ->  C  =  D )
rnmptpr.e  |-  ( x  =  B  ->  C  =  E )
Assertion
Ref Expression
rnmptpr  |-  ( ph  ->  ran  F  =  { D ,  E }
)
Distinct variable groups:    x, A    x, B    x, D    x, E
Allowed substitution hints:    ph( x)    C( x)    F( x)    V( x)    W( x)

Proof of Theorem rnmptpr
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . . . 6  |-  y  e. 
_V
2 rnmptpr.f . . . . . . 7  |-  F  =  ( x  e.  { A ,  B }  |->  C )
32elrnmpt 5372 . . . . . 6  |-  ( y  e.  _V  ->  (
y  e.  ran  F  <->  E. x  e.  { A ,  B } y  =  C ) )
41, 3ax-mp 5 . . . . 5  |-  ( y  e.  ran  F  <->  E. x  e.  { A ,  B } y  =  C )
54a1i 11 . . . 4  |-  ( ph  ->  ( y  e.  ran  F  <->  E. x  e.  { A ,  B } y  =  C ) )
6 rnmptpr.a . . . . 5  |-  ( ph  ->  A  e.  V )
7 rnmptpr.b . . . . 5  |-  ( ph  ->  B  e.  W )
8 rnmptpr.d . . . . . . 7  |-  ( x  =  A  ->  C  =  D )
98eqeq2d 2632 . . . . . 6  |-  ( x  =  A  ->  (
y  =  C  <->  y  =  D ) )
10 rnmptpr.e . . . . . . 7  |-  ( x  =  B  ->  C  =  E )
1110eqeq2d 2632 . . . . . 6  |-  ( x  =  B  ->  (
y  =  C  <->  y  =  E ) )
129, 11rexprg 4235 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. x  e. 
{ A ,  B } y  =  C  <-> 
( y  =  D  \/  y  =  E ) ) )
136, 7, 12syl2anc 693 . . . 4  |-  ( ph  ->  ( E. x  e. 
{ A ,  B } y  =  C  <-> 
( y  =  D  \/  y  =  E ) ) )
141elpr 4198 . . . . . 6  |-  ( y  e.  { D ,  E }  <->  ( y  =  D  \/  y  =  E ) )
1514bicomi 214 . . . . 5  |-  ( ( y  =  D  \/  y  =  E )  <->  y  e.  { D ,  E } )
1615a1i 11 . . . 4  |-  ( ph  ->  ( ( y  =  D  \/  y  =  E )  <->  y  e.  { D ,  E }
) )
175, 13, 163bitrd 294 . . 3  |-  ( ph  ->  ( y  e.  ran  F  <-> 
y  e.  { D ,  E } ) )
1817alrimiv 1855 . 2  |-  ( ph  ->  A. y ( y  e.  ran  F  <->  y  e.  { D ,  E }
) )
19 dfcleq 2616 . 2  |-  ( ran 
F  =  { D ,  E }  <->  A. y
( y  e.  ran  F  <-> 
y  e.  { D ,  E } ) )
2018, 19sylibr 224 1  |-  ( ph  ->  ran  F  =  { D ,  E }
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383   A.wal 1481    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200   {cpr 4179    |-> cmpt 4729   ran crn 5115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-mpt 4730  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by:  sge0pr  40611
  Copyright terms: Public domain W3C validator