Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0pr Structured version   Visualization version   GIF version

Theorem sge0pr 40611
Description: Sum of a pair of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0pr.a (𝜑𝐴𝑉)
sge0pr.b (𝜑𝐵𝑊)
sge0pr.d (𝜑𝐷 ∈ (0[,]+∞))
sge0pr.e (𝜑𝐸 ∈ (0[,]+∞))
sge0pr.cd (𝑘 = 𝐴𝐶 = 𝐷)
sge0pr.ce (𝑘 = 𝐵𝐶 = 𝐸)
sge0pr.ab (𝜑𝐴𝐵)
Assertion
Ref Expression
sge0pr (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐷,𝑘   𝑘,𝐸   𝑘,𝑉   𝑘,𝑊   𝜑,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem sge0pr
StepHypRef Expression
1 iccssxr 12256 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
2 sge0pr.e . . . . . . 7 (𝜑𝐸 ∈ (0[,]+∞))
31, 2sseldi 3601 . . . . . 6 (𝜑𝐸 ∈ ℝ*)
4 mnfxr 10096 . . . . . . . 8 -∞ ∈ ℝ*
54a1i 11 . . . . . . 7 (𝜑 → -∞ ∈ ℝ*)
6 0xr 10086 . . . . . . . . 9 0 ∈ ℝ*
76a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ ℝ*)
8 mnflt0 11959 . . . . . . . . 9 -∞ < 0
98a1i 11 . . . . . . . 8 (𝜑 → -∞ < 0)
10 pnfxr 10092 . . . . . . . . . 10 +∞ ∈ ℝ*
1110a1i 11 . . . . . . . . 9 (𝜑 → +∞ ∈ ℝ*)
12 iccgelb 12230 . . . . . . . . 9 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐸 ∈ (0[,]+∞)) → 0 ≤ 𝐸)
137, 11, 2, 12syl3anc 1326 . . . . . . . 8 (𝜑 → 0 ≤ 𝐸)
145, 7, 3, 9, 13xrltletrd 11992 . . . . . . 7 (𝜑 → -∞ < 𝐸)
155, 3, 14xrgtned 39538 . . . . . 6 (𝜑𝐸 ≠ -∞)
16 xaddpnf2 12058 . . . . . 6 ((𝐸 ∈ ℝ*𝐸 ≠ -∞) → (+∞ +𝑒 𝐸) = +∞)
173, 15, 16syl2anc 693 . . . . 5 (𝜑 → (+∞ +𝑒 𝐸) = +∞)
1817eqcomd 2628 . . . 4 (𝜑 → +∞ = (+∞ +𝑒 𝐸))
1918adantr 481 . . 3 ((𝜑𝐷 = +∞) → +∞ = (+∞ +𝑒 𝐸))
20 prex 4909 . . . . 5 {𝐴, 𝐵} ∈ V
2120a1i 11 . . . 4 ((𝜑𝐷 = +∞) → {𝐴, 𝐵} ∈ V)
22 sge0pr.cd . . . . . . . . . 10 (𝑘 = 𝐴𝐶 = 𝐷)
2322adantl 482 . . . . . . . . 9 ((𝜑𝑘 = 𝐴) → 𝐶 = 𝐷)
24 sge0pr.d . . . . . . . . . 10 (𝜑𝐷 ∈ (0[,]+∞))
2524adantr 481 . . . . . . . . 9 ((𝜑𝑘 = 𝐴) → 𝐷 ∈ (0[,]+∞))
2623, 25eqeltrd 2701 . . . . . . . 8 ((𝜑𝑘 = 𝐴) → 𝐶 ∈ (0[,]+∞))
2726adantlr 751 . . . . . . 7 (((𝜑𝑘 ∈ {𝐴, 𝐵}) ∧ 𝑘 = 𝐴) → 𝐶 ∈ (0[,]+∞))
28 simpll 790 . . . . . . . 8 (((𝜑𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝜑)
29 simpl 473 . . . . . . . . . 10 ((𝑘 ∈ {𝐴, 𝐵} ∧ ¬ 𝑘 = 𝐴) → 𝑘 ∈ {𝐴, 𝐵})
30 neqne 2802 . . . . . . . . . . 11 𝑘 = 𝐴𝑘𝐴)
3130adantl 482 . . . . . . . . . 10 ((𝑘 ∈ {𝐴, 𝐵} ∧ ¬ 𝑘 = 𝐴) → 𝑘𝐴)
32 elprn1 39865 . . . . . . . . . 10 ((𝑘 ∈ {𝐴, 𝐵} ∧ 𝑘𝐴) → 𝑘 = 𝐵)
3329, 31, 32syl2anc 693 . . . . . . . . 9 ((𝑘 ∈ {𝐴, 𝐵} ∧ ¬ 𝑘 = 𝐴) → 𝑘 = 𝐵)
3433adantll 750 . . . . . . . 8 (((𝜑𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝑘 = 𝐵)
35 sge0pr.ce . . . . . . . . . 10 (𝑘 = 𝐵𝐶 = 𝐸)
3635adantl 482 . . . . . . . . 9 ((𝜑𝑘 = 𝐵) → 𝐶 = 𝐸)
372adantr 481 . . . . . . . . 9 ((𝜑𝑘 = 𝐵) → 𝐸 ∈ (0[,]+∞))
3836, 37eqeltrd 2701 . . . . . . . 8 ((𝜑𝑘 = 𝐵) → 𝐶 ∈ (0[,]+∞))
3928, 34, 38syl2anc 693 . . . . . . 7 (((𝜑𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝐶 ∈ (0[,]+∞))
4027, 39pm2.61dan 832 . . . . . 6 ((𝜑𝑘 ∈ {𝐴, 𝐵}) → 𝐶 ∈ (0[,]+∞))
41 eqid 2622 . . . . . 6 (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶) = (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)
4240, 41fmptd 6385 . . . . 5 (𝜑 → (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶):{𝐴, 𝐵}⟶(0[,]+∞))
4342adantr 481 . . . 4 ((𝜑𝐷 = +∞) → (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶):{𝐴, 𝐵}⟶(0[,]+∞))
44 id 22 . . . . . . 7 (𝐷 = +∞ → 𝐷 = +∞)
4544eqcomd 2628 . . . . . 6 (𝐷 = +∞ → +∞ = 𝐷)
4645adantl 482 . . . . 5 ((𝜑𝐷 = +∞) → +∞ = 𝐷)
47 prid1g 4295 . . . . . . . 8 (𝐷 ∈ (0[,]+∞) → 𝐷 ∈ {𝐷, 𝐸})
4824, 47syl 17 . . . . . . 7 (𝜑𝐷 ∈ {𝐷, 𝐸})
49 sge0pr.a . . . . . . . . 9 (𝜑𝐴𝑉)
50 sge0pr.b . . . . . . . . 9 (𝜑𝐵𝑊)
5149, 50, 41, 22, 35rnmptpr 39358 . . . . . . . 8 (𝜑 → ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶) = {𝐷, 𝐸})
5251eqcomd 2628 . . . . . . 7 (𝜑 → {𝐷, 𝐸} = ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
5348, 52eleqtrd 2703 . . . . . 6 (𝜑𝐷 ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
5453adantr 481 . . . . 5 ((𝜑𝐷 = +∞) → 𝐷 ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
5546, 54eqeltrd 2701 . . . 4 ((𝜑𝐷 = +∞) → +∞ ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
5621, 43, 55sge0pnfval 40590 . . 3 ((𝜑𝐷 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = +∞)
57 oveq1 6657 . . . 4 (𝐷 = +∞ → (𝐷 +𝑒 𝐸) = (+∞ +𝑒 𝐸))
5857adantl 482 . . 3 ((𝜑𝐷 = +∞) → (𝐷 +𝑒 𝐸) = (+∞ +𝑒 𝐸))
5919, 56, 583eqtr4d 2666 . 2 ((𝜑𝐷 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
601, 24sseldi 3601 . . . . . . . 8 (𝜑𝐷 ∈ ℝ*)
61 iccgelb 12230 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐷 ∈ (0[,]+∞)) → 0 ≤ 𝐷)
627, 11, 24, 61syl3anc 1326 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐷)
635, 7, 60, 9, 62xrltletrd 11992 . . . . . . . . 9 (𝜑 → -∞ < 𝐷)
645, 60, 63xrgtned 39538 . . . . . . . 8 (𝜑𝐷 ≠ -∞)
65 xaddpnf1 12057 . . . . . . . 8 ((𝐷 ∈ ℝ*𝐷 ≠ -∞) → (𝐷 +𝑒 +∞) = +∞)
6660, 64, 65syl2anc 693 . . . . . . 7 (𝜑 → (𝐷 +𝑒 +∞) = +∞)
6766eqcomd 2628 . . . . . 6 (𝜑 → +∞ = (𝐷 +𝑒 +∞))
6867adantr 481 . . . . 5 ((𝜑𝐸 = +∞) → +∞ = (𝐷 +𝑒 +∞))
6920a1i 11 . . . . . 6 ((𝜑𝐸 = +∞) → {𝐴, 𝐵} ∈ V)
7042adantr 481 . . . . . 6 ((𝜑𝐸 = +∞) → (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶):{𝐴, 𝐵}⟶(0[,]+∞))
71 id 22 . . . . . . . . 9 (𝐸 = +∞ → 𝐸 = +∞)
7271eqcomd 2628 . . . . . . . 8 (𝐸 = +∞ → +∞ = 𝐸)
7372adantl 482 . . . . . . 7 ((𝜑𝐸 = +∞) → +∞ = 𝐸)
74 prid2g 4296 . . . . . . . . . 10 (𝐸 ∈ (0[,]+∞) → 𝐸 ∈ {𝐷, 𝐸})
752, 74syl 17 . . . . . . . . 9 (𝜑𝐸 ∈ {𝐷, 𝐸})
7675, 52eleqtrd 2703 . . . . . . . 8 (𝜑𝐸 ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
7776adantr 481 . . . . . . 7 ((𝜑𝐸 = +∞) → 𝐸 ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
7873, 77eqeltrd 2701 . . . . . 6 ((𝜑𝐸 = +∞) → +∞ ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
7969, 70, 78sge0pnfval 40590 . . . . 5 ((𝜑𝐸 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = +∞)
80 oveq2 6658 . . . . . 6 (𝐸 = +∞ → (𝐷 +𝑒 𝐸) = (𝐷 +𝑒 +∞))
8180adantl 482 . . . . 5 ((𝜑𝐸 = +∞) → (𝐷 +𝑒 𝐸) = (𝐷 +𝑒 +∞))
8268, 79, 813eqtr4d 2666 . . . 4 ((𝜑𝐸 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
8382adantlr 751 . . 3 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ 𝐸 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
84 rge0ssre 12280 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
85 ax-resscn 9993 . . . . . . . 8 ℝ ⊆ ℂ
8684, 85sstri 3612 . . . . . . 7 (0[,)+∞) ⊆ ℂ
876a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = +∞) → 0 ∈ ℝ*)
8810a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = +∞) → +∞ ∈ ℝ*)
8960adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = +∞) → 𝐷 ∈ ℝ*)
9062adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = +∞) → 0 ≤ 𝐷)
91 pnfge 11964 . . . . . . . . . . . 12 (𝐷 ∈ ℝ*𝐷 ≤ +∞)
9260, 91syl 17 . . . . . . . . . . 11 (𝜑𝐷 ≤ +∞)
9392adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐷 = +∞) → 𝐷 ≤ +∞)
9444necon3bi 2820 . . . . . . . . . . 11 𝐷 = +∞ → 𝐷 ≠ +∞)
9594adantl 482 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐷 = +∞) → 𝐷 ≠ +∞)
9689, 88, 93, 95xrleneltd 39539 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = +∞) → 𝐷 < +∞)
9787, 88, 89, 90, 96elicod 12224 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐷 = +∞) → 𝐷 ∈ (0[,)+∞))
9897adantr 481 . . . . . . 7 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐷 ∈ (0[,)+∞))
9986, 98sseldi 3601 . . . . . 6 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐷 ∈ ℂ)
1006a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐸 = +∞) → 0 ∈ ℝ*)
10110a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐸 = +∞) → +∞ ∈ ℝ*)
1023adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ ℝ*)
10313adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐸 = +∞) → 0 ≤ 𝐸)
104 pnfge 11964 . . . . . . . . . . . 12 (𝐸 ∈ ℝ*𝐸 ≤ +∞)
1053, 104syl 17 . . . . . . . . . . 11 (𝜑𝐸 ≤ +∞)
106105adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ≤ +∞)
10771necon3bi 2820 . . . . . . . . . . 11 𝐸 = +∞ → 𝐸 ≠ +∞)
108107adantl 482 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ≠ +∞)
109102, 101, 106, 108xrleneltd 39539 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 < +∞)
110100, 101, 102, 103, 109elicod 12224 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ (0[,)+∞))
11186, 110sseldi 3601 . . . . . . 7 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ ℂ)
112111adantlr 751 . . . . . 6 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ ℂ)
11399, 112jca 554 . . . . 5 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ))
11449, 50jca 554 . . . . . 6 (𝜑 → (𝐴𝑉𝐵𝑊))
115114ad2antrr 762 . . . . 5 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → (𝐴𝑉𝐵𝑊))
116 sge0pr.ab . . . . . 6 (𝜑𝐴𝐵)
117116ad2antrr 762 . . . . 5 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐴𝐵)
11822, 35, 113, 115, 117sumpr 14477 . . . 4 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸))
119 prfi 8235 . . . . . 6 {𝐴, 𝐵} ∈ Fin
120119a1i 11 . . . . 5 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → {𝐴, 𝐵} ∈ Fin)
12122adantl 482 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ 𝑘 = 𝐴) → 𝐶 = 𝐷)
12297adantr 481 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ 𝑘 = 𝐴) → 𝐷 ∈ (0[,)+∞))
123121, 122eqeltrd 2701 . . . . . . 7 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ 𝑘 = 𝐴) → 𝐶 ∈ (0[,)+∞))
124123ad4ant14 1293 . . . . . 6 (((((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ 𝑘 = 𝐴) → 𝐶 ∈ (0[,)+∞))
125 simp-4l 806 . . . . . . 7 (((((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝜑)
126 simpllr 799 . . . . . . 7 (((((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → ¬ 𝐸 = +∞)
12733adantll 750 . . . . . . 7 (((((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝑘 = 𝐵)
128363adant2 1080 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐸 = +∞ ∧ 𝑘 = 𝐵) → 𝐶 = 𝐸)
1291103adant3 1081 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐸 = +∞ ∧ 𝑘 = 𝐵) → 𝐸 ∈ (0[,)+∞))
130128, 129eqeltrd 2701 . . . . . . 7 ((𝜑 ∧ ¬ 𝐸 = +∞ ∧ 𝑘 = 𝐵) → 𝐶 ∈ (0[,)+∞))
131125, 126, 127, 130syl3anc 1326 . . . . . 6 (((((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝐶 ∈ (0[,)+∞))
132124, 131pm2.61dan 832 . . . . 5 ((((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) → 𝐶 ∈ (0[,)+∞))
133120, 132sge0fsummpt 40607 . . . 4 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = Σ𝑘 ∈ {𝐴, 𝐵}𝐶)
13484, 98sseldi 3601 . . . . 5 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐷 ∈ ℝ)
13584, 110sseldi 3601 . . . . . 6 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ ℝ)
136135adantlr 751 . . . . 5 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ ℝ)
137 rexadd 12063 . . . . 5 ((𝐷 ∈ ℝ ∧ 𝐸 ∈ ℝ) → (𝐷 +𝑒 𝐸) = (𝐷 + 𝐸))
138134, 136, 137syl2anc 693 . . . 4 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → (𝐷 +𝑒 𝐸) = (𝐷 + 𝐸))
139118, 133, 1383eqtr4d 2666 . . 3 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
14083, 139pm2.61dan 832 . 2 ((𝜑 ∧ ¬ 𝐷 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
14159, 140pm2.61dan 832 1 (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  {cpr 4179   class class class wbr 4653  cmpt 4729  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  cr 9935  0cc0 9936   + caddc 9939  +∞cpnf 10071  -∞cmnf 10072  *cxr 10073   < clt 10074  cle 10075   +𝑒 cxad 11944  [,)cico 12177  [,]cicc 12178  Σcsu 14416  Σ^csumge0 40579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-sumge0 40580
This theorem is referenced by:  sge0prle  40618  meadjun  40679  ovnsubadd2lem  40859
  Copyright terms: Public domain W3C validator