Step | Hyp | Ref
| Expression |
1 | | frgrhash2wsp.v |
. . . . . 6
⊢ 𝑉 = (Vtx‘𝐺) |
2 | | fusgreg2wsp.m |
. . . . . 6
⊢ 𝑀 = (𝑎 ∈ 𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎}) |
3 | 1, 2 | fusgreg2wsplem 27197 |
. . . . 5
⊢ (𝑁 ∈ 𝑉 → (𝑧 ∈ (𝑀‘𝑁) ↔ (𝑧 ∈ (2 WSPathsN 𝐺) ∧ (𝑧‘1) = 𝑁))) |
4 | 3 | adantl 482 |
. . . 4
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (𝑧 ∈ (𝑀‘𝑁) ↔ (𝑧 ∈ (2 WSPathsN 𝐺) ∧ (𝑧‘1) = 𝑁))) |
5 | | 2nn0 11309 |
. . . . . . . . 9
⊢ 2 ∈
ℕ0 |
6 | 1 | wspthsnwspthsnon 26811 |
. . . . . . . . 9
⊢ ((2
∈ ℕ0 ∧ 𝐺 ∈ FinUSGraph ) → (𝑧 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 𝑧 ∈ (𝑥(2 WSPathsNOn 𝐺)𝑦))) |
7 | 5, 6 | mpan 706 |
. . . . . . . 8
⊢ (𝐺 ∈ FinUSGraph → (𝑧 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 𝑧 ∈ (𝑥(2 WSPathsNOn 𝐺)𝑦))) |
8 | 7 | adantr 481 |
. . . . . . 7
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (𝑧 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 𝑧 ∈ (𝑥(2 WSPathsNOn 𝐺)𝑦))) |
9 | | fusgrusgr 26214 |
. . . . . . . . . 10
⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph
) |
10 | 9 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → 𝐺 ∈ USGraph ) |
11 | | eqid 2622 |
. . . . . . . . . 10
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
12 | 1, 11 | usgr2wspthon 26858 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USGraph ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑧 ∈ (𝑥(2 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑚 ∈ 𝑉 ((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ 𝑥 ≠ 𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))))) |
13 | 10, 12 | sylan 488 |
. . . . . . . 8
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑧 ∈ (𝑥(2 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑚 ∈ 𝑉 ((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ 𝑥 ≠ 𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))))) |
14 | 13 | 2rexbidva 3056 |
. . . . . . 7
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 𝑧 ∈ (𝑥(2 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑚 ∈ 𝑉 ((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ 𝑥 ≠ 𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))))) |
15 | 8, 14 | bitrd 268 |
. . . . . 6
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (𝑧 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑚 ∈ 𝑉 ((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ 𝑥 ≠ 𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))))) |
16 | 15 | anbi1d 741 |
. . . . 5
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → ((𝑧 ∈ (2 WSPathsN 𝐺) ∧ (𝑧‘1) = 𝑁) ↔ (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑚 ∈ 𝑉 ((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ 𝑥 ≠ 𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ∧ (𝑧‘1) = 𝑁))) |
17 | | 19.41vv 1915 |
. . . . . . 7
⊢
(∃𝑥∃𝑦(((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ∃𝑚 ∈ 𝑉 ((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ 𝑥 ≠ 𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ∧ (𝑧‘1) = 𝑁) ↔ (∃𝑥∃𝑦((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ∃𝑚 ∈ 𝑉 ((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ 𝑥 ≠ 𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ∧ (𝑧‘1) = 𝑁)) |
18 | | velsn 4193 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ {〈“𝑥𝑁𝑦”〉} ↔ 𝑧 = 〈“𝑥𝑁𝑦”〉) |
19 | 18 | bicomi 214 |
. . . . . . . . . . 11
⊢ (𝑧 = 〈“𝑥𝑁𝑦”〉 ↔ 𝑧 ∈ {〈“𝑥𝑁𝑦”〉}) |
20 | 19 | anbi2i 730 |
. . . . . . . . . 10
⊢ ((({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = 〈“𝑥𝑁𝑦”〉) ↔ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 ∈ {〈“𝑥𝑁𝑦”〉})) |
21 | 20 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → ((({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = 〈“𝑥𝑁𝑦”〉) ↔ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 ∈ {〈“𝑥𝑁𝑦”〉}))) |
22 | | simplr 792 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑧‘1) = 𝑁)) → 𝑁 ∈ 𝑉) |
23 | | anass 681 |
. . . . . . . . . . . . . . 15
⊢ (((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ 𝑥 ≠ 𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ↔ (𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ (𝑥 ≠ 𝑦 ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))))) |
24 | | ancom 466 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ (𝑥 ≠ 𝑦 ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ↔ ((𝑥 ≠ 𝑦 ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ∧ 𝑧 = 〈“𝑥𝑚𝑦”〉)) |
25 | | an12 838 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ≠ 𝑦 ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ↔ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ (𝑥 ≠ 𝑦 ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) |
26 | | nesym 2850 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑦 = 𝑥) |
27 | | prcom 4267 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {𝑚, 𝑦} = {𝑦, 𝑚} |
28 | 27 | eleq1i 2692 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({𝑚, 𝑦} ∈ (Edg‘𝐺) ↔ {𝑦, 𝑚} ∈ (Edg‘𝐺)) |
29 | 26, 28 | anbi12ci 734 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ≠ 𝑦 ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)) ↔ ({𝑦, 𝑚} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) |
30 | 29 | anbi2i 730 |
. . . . . . . . . . . . . . . . 17
⊢ (({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ (𝑥 ≠ 𝑦 ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ↔ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑚} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥))) |
31 | 25, 30 | bitri 264 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ≠ 𝑦 ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ↔ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑚} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥))) |
32 | 31 | anbi1i 731 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ≠ 𝑦 ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ∧ 𝑧 = 〈“𝑥𝑚𝑦”〉) ↔ (({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑚} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = 〈“𝑥𝑚𝑦”〉)) |
33 | 23, 24, 32 | 3bitri 286 |
. . . . . . . . . . . . . 14
⊢ (((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ 𝑥 ≠ 𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ↔ (({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑚} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = 〈“𝑥𝑚𝑦”〉)) |
34 | | preq2 4269 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑁 → {𝑥, 𝑚} = {𝑥, 𝑁}) |
35 | 34 | eleq1d 2686 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑁 → ({𝑥, 𝑚} ∈ (Edg‘𝐺) ↔ {𝑥, 𝑁} ∈ (Edg‘𝐺))) |
36 | | preq2 4269 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑁 → {𝑦, 𝑚} = {𝑦, 𝑁}) |
37 | 36 | eleq1d 2686 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑁 → ({𝑦, 𝑚} ∈ (Edg‘𝐺) ↔ {𝑦, 𝑁} ∈ (Edg‘𝐺))) |
38 | 37 | anbi1d 741 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑁 → (({𝑦, 𝑚} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥) ↔ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥))) |
39 | 35, 38 | anbi12d 747 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑁 → (({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑚} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ↔ ({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)))) |
40 | | s3eq2 13615 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑁 → 〈“𝑥𝑚𝑦”〉 = 〈“𝑥𝑁𝑦”〉) |
41 | 40 | eqeq2d 2632 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑁 → (𝑧 = 〈“𝑥𝑚𝑦”〉 ↔ 𝑧 = 〈“𝑥𝑁𝑦”〉)) |
42 | 39, 41 | anbi12d 747 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑁 → ((({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑚} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = 〈“𝑥𝑚𝑦”〉) ↔ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = 〈“𝑥𝑁𝑦”〉))) |
43 | 33, 42 | syl5bb 272 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑁 → (((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ 𝑥 ≠ 𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ↔ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = 〈“𝑥𝑁𝑦”〉))) |
44 | 43 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑧‘1) = 𝑁)) ∧ 𝑚 = 𝑁) → (((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ 𝑥 ≠ 𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ↔ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = 〈“𝑥𝑁𝑦”〉))) |
45 | | fveq1 6190 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = 〈“𝑥𝑚𝑦”〉 → (𝑧‘1) = (〈“𝑥𝑚𝑦”〉‘1)) |
46 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑚 ∈ V |
47 | | s3fv1 13637 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈ V →
(〈“𝑥𝑚𝑦”〉‘1) = 𝑚) |
48 | 46, 47 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(〈“𝑥𝑚𝑦”〉‘1) = 𝑚 |
49 | 45, 48 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 〈“𝑥𝑚𝑦”〉 → (𝑧‘1) = 𝑚) |
50 | 49 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 〈“𝑥𝑚𝑦”〉 → ((𝑧‘1) = 𝑁 ↔ 𝑚 = 𝑁)) |
51 | 50 | biimpd 219 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 〈“𝑥𝑚𝑦”〉 → ((𝑧‘1) = 𝑁 → 𝑚 = 𝑁)) |
52 | 51 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ 𝑥 ≠ 𝑦) → ((𝑧‘1) = 𝑁 → 𝑚 = 𝑁)) |
53 | 52 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ 𝑥 ≠ 𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) → ((𝑧‘1) = 𝑁 → 𝑚 = 𝑁)) |
54 | 53 | com12 32 |
. . . . . . . . . . . . . 14
⊢ ((𝑧‘1) = 𝑁 → (((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ 𝑥 ≠ 𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) → 𝑚 = 𝑁)) |
55 | 54 | ad2antll 765 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑧‘1) = 𝑁)) → (((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ 𝑥 ≠ 𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) → 𝑚 = 𝑁)) |
56 | 55 | imp 445 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑧‘1) = 𝑁)) ∧ ((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ 𝑥 ≠ 𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) → 𝑚 = 𝑁) |
57 | 22, 44, 56 | rspcebdv 3314 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑧‘1) = 𝑁)) → (∃𝑚 ∈ 𝑉 ((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ 𝑥 ≠ 𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ↔ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = 〈“𝑥𝑁𝑦”〉))) |
58 | 57 | pm5.32da 673 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → ((((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑧‘1) = 𝑁) ∧ ∃𝑚 ∈ 𝑉 ((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ 𝑥 ≠ 𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ↔ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑧‘1) = 𝑁) ∧ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = 〈“𝑥𝑁𝑦”〉)))) |
59 | | an32 839 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ∃𝑚 ∈ 𝑉 ((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ 𝑥 ≠ 𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ∧ (𝑧‘1) = 𝑁) ↔ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑧‘1) = 𝑁) ∧ ∃𝑚 ∈ 𝑉 ((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ 𝑥 ≠ 𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))))) |
60 | 59 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → ((((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ∃𝑚 ∈ 𝑉 ((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ 𝑥 ≠ 𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ∧ (𝑧‘1) = 𝑁) ↔ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑧‘1) = 𝑁) ∧ ∃𝑚 ∈ 𝑉 ((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ 𝑥 ≠ 𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))))) |
61 | | usgrumgr 26074 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph
) |
62 | 1, 11 | umgrpredgv 26035 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐺 ∈ UMGraph ∧ {𝑥, 𝑁} ∈ (Edg‘𝐺)) → (𝑥 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) |
63 | 62 | simpld 475 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∈ UMGraph ∧ {𝑥, 𝑁} ∈ (Edg‘𝐺)) → 𝑥 ∈ 𝑉) |
64 | 63 | ex 450 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐺 ∈ UMGraph → ({𝑥, 𝑁} ∈ (Edg‘𝐺) → 𝑥 ∈ 𝑉)) |
65 | 1, 11 | umgrpredgv 26035 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐺 ∈ UMGraph ∧ {𝑦, 𝑁} ∈ (Edg‘𝐺)) → (𝑦 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) |
66 | 65 | simpld 475 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐺 ∈ UMGraph ∧ {𝑦, 𝑁} ∈ (Edg‘𝐺)) → 𝑦 ∈ 𝑉) |
67 | 66 | expcom 451 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑦, 𝑁} ∈ (Edg‘𝐺) → (𝐺 ∈ UMGraph → 𝑦 ∈ 𝑉)) |
68 | 67 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥) → (𝐺 ∈ UMGraph → 𝑦 ∈ 𝑉)) |
69 | 68 | com12 32 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐺 ∈ UMGraph → (({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥) → 𝑦 ∈ 𝑉)) |
70 | 64, 69 | anim12d 586 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺 ∈ UMGraph → (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉))) |
71 | 9, 61, 70 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺 ∈ FinUSGraph →
(({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉))) |
72 | 71 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉))) |
73 | 72 | com12 32 |
. . . . . . . . . . . . . . 15
⊢ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) → ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉))) |
74 | 73 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = 〈“𝑥𝑁𝑦”〉) → ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉))) |
75 | 74 | impcom 446 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) ∧ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = 〈“𝑥𝑁𝑦”〉)) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) |
76 | | fveq1 6190 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 〈“𝑥𝑁𝑦”〉 → (𝑧‘1) = (〈“𝑥𝑁𝑦”〉‘1)) |
77 | 76 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = 〈“𝑥𝑁𝑦”〉) → (𝑧‘1) = (〈“𝑥𝑁𝑦”〉‘1)) |
78 | | s3fv1 13637 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ 𝑉 → (〈“𝑥𝑁𝑦”〉‘1) = 𝑁) |
79 | 78 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (〈“𝑥𝑁𝑦”〉‘1) = 𝑁) |
80 | 77, 79 | sylan9eqr 2678 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) ∧ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = 〈“𝑥𝑁𝑦”〉)) → (𝑧‘1) = 𝑁) |
81 | 75, 80 | jca 554 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) ∧ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = 〈“𝑥𝑁𝑦”〉)) → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑧‘1) = 𝑁)) |
82 | 81 | ex 450 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → ((({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = 〈“𝑥𝑁𝑦”〉) → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑧‘1) = 𝑁))) |
83 | 82 | pm4.71rd 667 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → ((({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = 〈“𝑥𝑁𝑦”〉) ↔ (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ (𝑧‘1) = 𝑁) ∧ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = 〈“𝑥𝑁𝑦”〉)))) |
84 | 58, 60, 83 | 3bitr4d 300 |
. . . . . . . . 9
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → ((((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ∃𝑚 ∈ 𝑉 ((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ 𝑥 ≠ 𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ∧ (𝑧‘1) = 𝑁) ↔ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = 〈“𝑥𝑁𝑦”〉))) |
85 | 11 | nbusgreledg 26249 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ USGraph → (𝑥 ∈ (𝐺 NeighbVtx 𝑁) ↔ {𝑥, 𝑁} ∈ (Edg‘𝐺))) |
86 | 9, 85 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ FinUSGraph → (𝑥 ∈ (𝐺 NeighbVtx 𝑁) ↔ {𝑥, 𝑁} ∈ (Edg‘𝐺))) |
87 | 86 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (𝑥 ∈ (𝐺 NeighbVtx 𝑁) ↔ {𝑥, 𝑁} ∈ (Edg‘𝐺))) |
88 | | eldif 3584 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥}) ↔ (𝑦 ∈ (𝐺 NeighbVtx 𝑁) ∧ ¬ 𝑦 ∈ {𝑥})) |
89 | 11 | nbusgreledg 26249 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ∈ USGraph → (𝑦 ∈ (𝐺 NeighbVtx 𝑁) ↔ {𝑦, 𝑁} ∈ (Edg‘𝐺))) |
90 | 9, 89 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈ FinUSGraph → (𝑦 ∈ (𝐺 NeighbVtx 𝑁) ↔ {𝑦, 𝑁} ∈ (Edg‘𝐺))) |
91 | 90 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (𝑦 ∈ (𝐺 NeighbVtx 𝑁) ↔ {𝑦, 𝑁} ∈ (Edg‘𝐺))) |
92 | | velsn 4193 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥) |
93 | 92 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥)) |
94 | 93 | notbid 308 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (¬ 𝑦 ∈ {𝑥} ↔ ¬ 𝑦 = 𝑥)) |
95 | 91, 94 | anbi12d 747 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → ((𝑦 ∈ (𝐺 NeighbVtx 𝑁) ∧ ¬ 𝑦 ∈ {𝑥}) ↔ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥))) |
96 | 88, 95 | syl5bb 272 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥}) ↔ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥))) |
97 | 87, 96 | anbi12d 747 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → ((𝑥 ∈ (𝐺 NeighbVtx 𝑁) ∧ 𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})) ↔ ({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)))) |
98 | 97 | anbi1d 741 |
. . . . . . . . 9
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (((𝑥 ∈ (𝐺 NeighbVtx 𝑁) ∧ 𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})) ∧ 𝑧 ∈ {〈“𝑥𝑁𝑦”〉}) ↔ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 ∈ {〈“𝑥𝑁𝑦”〉}))) |
99 | 21, 84, 98 | 3bitr4d 300 |
. . . . . . . 8
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → ((((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ∃𝑚 ∈ 𝑉 ((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ 𝑥 ≠ 𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ∧ (𝑧‘1) = 𝑁) ↔ ((𝑥 ∈ (𝐺 NeighbVtx 𝑁) ∧ 𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})) ∧ 𝑧 ∈ {〈“𝑥𝑁𝑦”〉}))) |
100 | 99 | 2exbidv 1852 |
. . . . . . 7
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (∃𝑥∃𝑦(((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ∃𝑚 ∈ 𝑉 ((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ 𝑥 ≠ 𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ∧ (𝑧‘1) = 𝑁) ↔ ∃𝑥∃𝑦((𝑥 ∈ (𝐺 NeighbVtx 𝑁) ∧ 𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})) ∧ 𝑧 ∈ {〈“𝑥𝑁𝑦”〉}))) |
101 | 17, 100 | syl5bbr 274 |
. . . . . 6
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → ((∃𝑥∃𝑦((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ∃𝑚 ∈ 𝑉 ((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ 𝑥 ≠ 𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ∧ (𝑧‘1) = 𝑁) ↔ ∃𝑥∃𝑦((𝑥 ∈ (𝐺 NeighbVtx 𝑁) ∧ 𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})) ∧ 𝑧 ∈ {〈“𝑥𝑁𝑦”〉}))) |
102 | | r2ex 3061 |
. . . . . . 7
⊢
(∃𝑥 ∈
𝑉 ∃𝑦 ∈ 𝑉 ∃𝑚 ∈ 𝑉 ((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ 𝑥 ≠ 𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ∃𝑚 ∈ 𝑉 ((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ 𝑥 ≠ 𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))))) |
103 | 102 | anbi1i 731 |
. . . . . 6
⊢
((∃𝑥 ∈
𝑉 ∃𝑦 ∈ 𝑉 ∃𝑚 ∈ 𝑉 ((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ 𝑥 ≠ 𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ∧ (𝑧‘1) = 𝑁) ↔ (∃𝑥∃𝑦((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ∃𝑚 ∈ 𝑉 ((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ 𝑥 ≠ 𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ∧ (𝑧‘1) = 𝑁)) |
104 | | r2ex 3061 |
. . . . . 6
⊢
(∃𝑥 ∈
(𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑧 ∈ {〈“𝑥𝑁𝑦”〉} ↔ ∃𝑥∃𝑦((𝑥 ∈ (𝐺 NeighbVtx 𝑁) ∧ 𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})) ∧ 𝑧 ∈ {〈“𝑥𝑁𝑦”〉})) |
105 | 101, 103,
104 | 3bitr4g 303 |
. . . . 5
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → ((∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑚 ∈ 𝑉 ((𝑧 = 〈“𝑥𝑚𝑦”〉 ∧ 𝑥 ≠ 𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ∧ (𝑧‘1) = 𝑁) ↔ ∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑧 ∈ {〈“𝑥𝑁𝑦”〉})) |
106 | | vex 3203 |
. . . . . . . 8
⊢ 𝑧 ∈ V |
107 | | eleq1w 2684 |
. . . . . . . . 9
⊢ (𝑝 = 𝑧 → (𝑝 ∈ {〈“𝑥𝑁𝑦”〉} ↔ 𝑧 ∈ {〈“𝑥𝑁𝑦”〉})) |
108 | 107 | 2rexbidv 3057 |
. . . . . . . 8
⊢ (𝑝 = 𝑧 → (∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑝 ∈ {〈“𝑥𝑁𝑦”〉} ↔ ∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑧 ∈ {〈“𝑥𝑁𝑦”〉})) |
109 | 106, 108 | elab 3350 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑝 ∣ ∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑝 ∈ {〈“𝑥𝑁𝑦”〉}} ↔ ∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑧 ∈ {〈“𝑥𝑁𝑦”〉}) |
110 | 109 | bicomi 214 |
. . . . . 6
⊢
(∃𝑥 ∈
(𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑧 ∈ {〈“𝑥𝑁𝑦”〉} ↔ 𝑧 ∈ {𝑝 ∣ ∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑝 ∈ {〈“𝑥𝑁𝑦”〉}}) |
111 | 110 | a1i 11 |
. . . . 5
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑧 ∈ {〈“𝑥𝑁𝑦”〉} ↔ 𝑧 ∈ {𝑝 ∣ ∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑝 ∈ {〈“𝑥𝑁𝑦”〉}})) |
112 | 16, 105, 111 | 3bitrd 294 |
. . . 4
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → ((𝑧 ∈ (2 WSPathsN 𝐺) ∧ (𝑧‘1) = 𝑁) ↔ 𝑧 ∈ {𝑝 ∣ ∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑝 ∈ {〈“𝑥𝑁𝑦”〉}})) |
113 | 4, 112 | bitrd 268 |
. . 3
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (𝑧 ∈ (𝑀‘𝑁) ↔ 𝑧 ∈ {𝑝 ∣ ∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑝 ∈ {〈“𝑥𝑁𝑦”〉}})) |
114 | 113 | eqrdv 2620 |
. 2
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (𝑀‘𝑁) = {𝑝 ∣ ∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑝 ∈ {〈“𝑥𝑁𝑦”〉}}) |
115 | | dfiunv2 4556 |
. 2
⊢ ∪ 𝑥 ∈ (𝐺 NeighbVtx 𝑁)∪ 𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥}){〈“𝑥𝑁𝑦”〉} = {𝑝 ∣ ∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑝 ∈ {〈“𝑥𝑁𝑦”〉}} |
116 | 114, 115 | syl6eqr 2674 |
1
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (𝑀‘𝑁) = ∪
𝑥 ∈ (𝐺 NeighbVtx 𝑁)∪ 𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥}){〈“𝑥𝑁𝑦”〉}) |