MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s2eqd Structured version   Visualization version   GIF version

Theorem s2eqd 13608
Description: Equality theorem for a doubleton word. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
s2eqd.1 (𝜑𝐴 = 𝑁)
s2eqd.2 (𝜑𝐵 = 𝑂)
Assertion
Ref Expression
s2eqd (𝜑 → ⟨“𝐴𝐵”⟩ = ⟨“𝑁𝑂”⟩)

Proof of Theorem s2eqd
StepHypRef Expression
1 s2eqd.1 . . . 4 (𝜑𝐴 = 𝑁)
21s1eqd 13381 . . 3 (𝜑 → ⟨“𝐴”⟩ = ⟨“𝑁”⟩)
3 s2eqd.2 . . . 4 (𝜑𝐵 = 𝑂)
43s1eqd 13381 . . 3 (𝜑 → ⟨“𝐵”⟩ = ⟨“𝑂”⟩)
52, 4oveq12d 6668 . 2 (𝜑 → (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩) = (⟨“𝑁”⟩ ++ ⟨“𝑂”⟩))
6 df-s2 13593 . 2 ⟨“𝐴𝐵”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩)
7 df-s2 13593 . 2 ⟨“𝑁𝑂”⟩ = (⟨“𝑁”⟩ ++ ⟨“𝑂”⟩)
85, 6, 73eqtr4g 2681 1 (𝜑 → ⟨“𝐴𝐵”⟩ = ⟨“𝑁𝑂”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  (class class class)co 6650   ++ cconcat 13293  ⟨“cs1 13294  ⟨“cs2 13586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-s1 13302  df-s2 13593
This theorem is referenced by:  s3eqd  13609  wrdl2exs2  13690  swrd2lsw  13695  efgi  18132  efgi0  18133  efgi1  18134  efgtf  18135  efgtval  18136  efgval2  18137  frgpuplem  18185
  Copyright terms: Public domain W3C validator