![]() |
Metamath
Proof Explorer Theorem List (p. 137 of 426) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27775) |
![]() (27776-29300) |
![]() (29301-42551) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cats1co 13601 | Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ (𝜑 → 𝑆 ∈ Word 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → (𝐹 ∘ 𝑆) = 𝑈) & ⊢ 𝑉 = (𝑈 ++ 〈“(𝐹‘𝑋)”〉) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝑇) = 𝑉) | ||
Theorem | cats1cli 13602 | Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ 𝑆 ∈ Word V ⇒ ⊢ 𝑇 ∈ Word V | ||
Theorem | cats1fvn 13603 | The last symbol of a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ 𝑆 ∈ Word V & ⊢ (#‘𝑆) = 𝑀 ⇒ ⊢ (𝑋 ∈ 𝑉 → (𝑇‘𝑀) = 𝑋) | ||
Theorem | cats1fv 13604 | A symbol other than the last in a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ 𝑆 ∈ Word V & ⊢ (#‘𝑆) = 𝑀 & ⊢ (𝑌 ∈ 𝑉 → (𝑆‘𝑁) = 𝑌) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑁 < 𝑀 ⇒ ⊢ (𝑌 ∈ 𝑉 → (𝑇‘𝑁) = 𝑌) | ||
Theorem | cats1len 13605 | The length of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ 𝑆 ∈ Word V & ⊢ (#‘𝑆) = 𝑀 & ⊢ (𝑀 + 1) = 𝑁 ⇒ ⊢ (#‘𝑇) = 𝑁 | ||
Theorem | cats1cat 13606 | Closure of concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 𝑇 = (𝑆 ++ 〈“𝑋”〉) & ⊢ 𝐴 ∈ Word V & ⊢ 𝑆 ∈ Word V & ⊢ 𝐶 = (𝐵 ++ 〈“𝑋”〉) & ⊢ 𝐵 = (𝐴 ++ 𝑆) ⇒ ⊢ 𝐶 = (𝐴 ++ 𝑇) | ||
Theorem | cats2cat 13607 | Closure of concatenation of concatenations with singleton words. (Contributed by AV, 1-Mar-2021.) |
⊢ 𝐵 ∈ Word V & ⊢ 𝐷 ∈ Word V & ⊢ 𝐴 = (𝐵 ++ 〈“𝑋”〉) & ⊢ 𝐶 = (〈“𝑌”〉 ++ 𝐷) ⇒ ⊢ (𝐴 ++ 𝐶) = ((𝐵 ++ 〈“𝑋𝑌”〉) ++ 𝐷) | ||
Theorem | s2eqd 13608 | Equality theorem for a doubleton word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐴 = 𝑁) & ⊢ (𝜑 → 𝐵 = 𝑂) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵”〉 = 〈“𝑁𝑂”〉) | ||
Theorem | s3eqd 13609 | Equality theorem for a length 3 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐴 = 𝑁) & ⊢ (𝜑 → 𝐵 = 𝑂) & ⊢ (𝜑 → 𝐶 = 𝑃) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 = 〈“𝑁𝑂𝑃”〉) | ||
Theorem | s4eqd 13610 | Equality theorem for a length 4 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐴 = 𝑁) & ⊢ (𝜑 → 𝐵 = 𝑂) & ⊢ (𝜑 → 𝐶 = 𝑃) & ⊢ (𝜑 → 𝐷 = 𝑄) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷”〉 = 〈“𝑁𝑂𝑃𝑄”〉) | ||
Theorem | s5eqd 13611 | Equality theorem for a length 5 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐴 = 𝑁) & ⊢ (𝜑 → 𝐵 = 𝑂) & ⊢ (𝜑 → 𝐶 = 𝑃) & ⊢ (𝜑 → 𝐷 = 𝑄) & ⊢ (𝜑 → 𝐸 = 𝑅) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸”〉 = 〈“𝑁𝑂𝑃𝑄𝑅”〉) | ||
Theorem | s6eqd 13612 | Equality theorem for a length 6 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐴 = 𝑁) & ⊢ (𝜑 → 𝐵 = 𝑂) & ⊢ (𝜑 → 𝐶 = 𝑃) & ⊢ (𝜑 → 𝐷 = 𝑄) & ⊢ (𝜑 → 𝐸 = 𝑅) & ⊢ (𝜑 → 𝐹 = 𝑆) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 = 〈“𝑁𝑂𝑃𝑄𝑅𝑆”〉) | ||
Theorem | s7eqd 13613 | Equality theorem for a length 7 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐴 = 𝑁) & ⊢ (𝜑 → 𝐵 = 𝑂) & ⊢ (𝜑 → 𝐶 = 𝑃) & ⊢ (𝜑 → 𝐷 = 𝑄) & ⊢ (𝜑 → 𝐸 = 𝑅) & ⊢ (𝜑 → 𝐹 = 𝑆) & ⊢ (𝜑 → 𝐺 = 𝑇) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = 〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇”〉) | ||
Theorem | s8eqd 13614 | Equality theorem for a length 8 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐴 = 𝑁) & ⊢ (𝜑 → 𝐵 = 𝑂) & ⊢ (𝜑 → 𝐶 = 𝑃) & ⊢ (𝜑 → 𝐷 = 𝑄) & ⊢ (𝜑 → 𝐸 = 𝑅) & ⊢ (𝜑 → 𝐹 = 𝑆) & ⊢ (𝜑 → 𝐺 = 𝑇) & ⊢ (𝜑 → 𝐻 = 𝑈) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 = 〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇𝑈”〉) | ||
Theorem | s3eq2 13615 | Equality theorem for a length 3 word for the second symbol. (Contributed by AV, 4-Jan-2022.) |
⊢ (𝐵 = 𝐷 → 〈“𝐴𝐵𝐶”〉 = 〈“𝐴𝐷𝐶”〉) | ||
Theorem | s2cld 13616 | A doubleton word is a word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵”〉 ∈ Word 𝑋) | ||
Theorem | s3cld 13617 | A length 3 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ Word 𝑋) | ||
Theorem | s4cld 13618 | A length 4 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷”〉 ∈ Word 𝑋) | ||
Theorem | s5cld 13619 | A length 5 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → 𝐸 ∈ 𝑋) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸”〉 ∈ Word 𝑋) | ||
Theorem | s6cld 13620 | A length 6 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → 𝐸 ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ 𝑋) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 ∈ Word 𝑋) | ||
Theorem | s7cld 13621 | A length 7 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → 𝐸 ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ∈ 𝑋) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 ∈ Word 𝑋) | ||
Theorem | s8cld 13622 | A length 7 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ (𝜑 → 𝐸 ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ∈ 𝑋) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) ⇒ ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 ∈ Word 𝑋) | ||
Theorem | s2cl 13623 | A doubleton word is a word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 〈“𝐴𝐵”〉 ∈ Word 𝑋) | ||
Theorem | s3cl 13624 | A length 3 string is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 〈“𝐴𝐵𝐶”〉 ∈ Word 𝑋) | ||
Theorem | s2cli 13625 | A doubleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 〈“𝐴𝐵”〉 ∈ Word V | ||
Theorem | s3cli 13626 | A length 3 string is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 〈“𝐴𝐵𝐶”〉 ∈ Word V | ||
Theorem | s4cli 13627 | A length 4 string is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 〈“𝐴𝐵𝐶𝐷”〉 ∈ Word V | ||
Theorem | s5cli 13628 | A length 5 string is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 〈“𝐴𝐵𝐶𝐷𝐸”〉 ∈ Word V | ||
Theorem | s6cli 13629 | A length 6 string is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 ∈ Word V | ||
Theorem | s7cli 13630 | A length 7 string is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 ∈ Word V | ||
Theorem | s8cli 13631 | A length 8 string is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 ∈ Word V | ||
Theorem | s2fv0 13632 | Extract the first symbol from a doubleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
⊢ (𝐴 ∈ 𝑉 → (〈“𝐴𝐵”〉‘0) = 𝐴) | ||
Theorem | s2fv1 13633 | Extract the second symbol from a doubleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
⊢ (𝐵 ∈ 𝑉 → (〈“𝐴𝐵”〉‘1) = 𝐵) | ||
Theorem | s2len 13634 | The length of a doubleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
⊢ (#‘〈“𝐴𝐵”〉) = 2 | ||
Theorem | s2dm 13635 | The domain of a doubleton word is an unordered pair. (Contributed by AV, 9-Jan-2020.) |
⊢ dom 〈“𝐴𝐵”〉 = {0, 1} | ||
Theorem | s3fv0 13636 | Extract the first symbol from a length 3 string. (Contributed by Mario Carneiro, 13-Jan-2017.) |
⊢ (𝐴 ∈ 𝑉 → (〈“𝐴𝐵𝐶”〉‘0) = 𝐴) | ||
Theorem | s3fv1 13637 | Extract the second symbol from a length 3 string. (Contributed by Mario Carneiro, 13-Jan-2017.) |
⊢ (𝐵 ∈ 𝑉 → (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) | ||
Theorem | s3fv2 13638 | Extract the third symbol from a length 3 string. (Contributed by Mario Carneiro, 13-Jan-2017.) |
⊢ (𝐶 ∈ 𝑉 → (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) | ||
Theorem | s3len 13639 | The length of a length 3 string. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ (#‘〈“𝐴𝐵𝐶”〉) = 3 | ||
Theorem | s4fv0 13640 | Extract the first symbol from a length 4 string. (Contributed by Thierry Arnoux, 8-Oct-2020.) |
⊢ (𝐴 ∈ 𝑉 → (〈“𝐴𝐵𝐶𝐷”〉‘0) = 𝐴) | ||
Theorem | s4fv1 13641 | Extract the second symbol from a length 4 string. (Contributed by Thierry Arnoux, 8-Oct-2020.) |
⊢ (𝐵 ∈ 𝑉 → (〈“𝐴𝐵𝐶𝐷”〉‘1) = 𝐵) | ||
Theorem | s4fv2 13642 | Extract the third symbol from a length 4 string. (Contributed by Thierry Arnoux, 8-Oct-2020.) |
⊢ (𝐶 ∈ 𝑉 → (〈“𝐴𝐵𝐶𝐷”〉‘2) = 𝐶) | ||
Theorem | s4fv3 13643 | Extract the fourth symbol from a length 4 string. (Contributed by Thierry Arnoux, 8-Oct-2020.) |
⊢ (𝐷 ∈ 𝑉 → (〈“𝐴𝐵𝐶𝐷”〉‘3) = 𝐷) | ||
Theorem | s4len 13644 | The length of a length 4 string. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ (#‘〈“𝐴𝐵𝐶𝐷”〉) = 4 | ||
Theorem | s5len 13645 | The length of a length 5 string. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ (#‘〈“𝐴𝐵𝐶𝐷𝐸”〉) = 5 | ||
Theorem | s6len 13646 | The length of a length 6 string. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ (#‘〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉) = 6 | ||
Theorem | s7len 13647 | The length of a length 7 string. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ (#‘〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉) = 7 | ||
Theorem | s8len 13648 | The length of a length 8 string. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ (#‘〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉) = 8 | ||
Theorem | lsws2 13649 | The last symbol of a doubleton word is its second symbol. (Contributed by AV, 8-Feb-2021.) |
⊢ (𝐵 ∈ 𝑉 → ( lastS ‘〈“𝐴𝐵”〉) = 𝐵) | ||
Theorem | lsws3 13650 | The last symbol of a 3 letter word is its third symbol. (Contributed by AV, 8-Feb-2021.) |
⊢ (𝐶 ∈ 𝑉 → ( lastS ‘〈“𝐴𝐵𝐶”〉) = 𝐶) | ||
Theorem | lsws4 13651 | The last symbol of a 4 letter word is its fourth symbol. (Contributed by AV, 8-Feb-2021.) |
⊢ (𝐷 ∈ 𝑉 → ( lastS ‘〈“𝐴𝐵𝐶𝐷”〉) = 𝐷) | ||
Theorem | s2prop 13652 | A length 2 word is an unordered pair of ordered pairs. (Contributed by Alexander van der Vekens, 14-Aug-2017.) |
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 〈“𝐴𝐵”〉 = {〈0, 𝐴〉, 〈1, 𝐵〉}) | ||
Theorem | s2dmALT 13653 | Alternate version of s2dm 13635, having a shorter proof, but requiring that 𝐴 and 𝐵 are sets. (Contributed by AV, 9-Jan-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → dom 〈“𝐴𝐵”〉 = {0, 1}) | ||
Theorem | s3tpop 13654 | A length 3 word is an unordered triple of ordered pairs. (Contributed by AV, 23-Jan-2021.) |
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → 〈“𝐴𝐵𝐶”〉 = {〈0, 𝐴〉, 〈1, 𝐵〉, 〈2, 𝐶〉}) | ||
Theorem | s4prop 13655 | A length 4 word is a union of two unordered pairs of ordered pairs. (Contributed by Alexander van der Vekens, 14-Aug-2017.) |
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 〈“𝐴𝐵𝐶𝐷”〉 = ({〈0, 𝐴〉, 〈1, 𝐵〉} ∪ {〈2, 𝐶〉, 〈3, 𝐷〉})) | ||
Theorem | s3fn 13656 | A length 3 word is a function with a triple as domain. (Contributed by Alexander van der Vekens, 5-Dec-2017.) (Revised by AV, 23-Jan-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → 〈“𝐴𝐵𝐶”〉 Fn {0, 1, 2}) | ||
Theorem | funcnvs1 13657 | The converse of a singleton word is a function. (Contributed by AV, 22-Jan-2021.) |
⊢ Fun ◡〈“𝐴”〉 | ||
Theorem | funcnvs2 13658 | The converse of a length 2 word is a function if its symbols are different sets. (Contributed by AV, 23-Jan-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) → Fun ◡〈“𝐴𝐵”〉) | ||
Theorem | funcnvs3 13659 | The converse of a length 3 word is a function if its symbols are different sets. (Contributed by Alexander van der Vekens, 31-Jan-2018.) (Revised by AV, 23-Jan-2021.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → Fun ◡〈“𝐴𝐵𝐶”〉) | ||
Theorem | funcnvs4 13660 | The converse of a length 4 word is a function if its symbols are different sets. (Contributed by AV, 10-Feb-2021.) |
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) ∧ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) → Fun ◡〈“𝐴𝐵𝐶𝐷”〉) | ||
Theorem | s2f1o 13661 | A length 2 word with mutually different symbols is a one-to-one function onto the set of the symbols. (Contributed by Alexander van der Vekens, 14-Aug-2017.) |
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐸 = 〈“𝐴𝐵”〉 → 𝐸:{0, 1}–1-1-onto→{𝐴, 𝐵})) | ||
Theorem | f1oun2prg 13662 | A union of unordered pairs of ordered pairs with different elements is a one-to-one onto function. (Contributed by Alexander van der Vekens, 14-Aug-2017.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌)) → (((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷)) → ({〈0, 𝐴〉, 〈1, 𝐵〉} ∪ {〈2, 𝐶〉, 〈3, 𝐷〉}):({0, 1} ∪ {2, 3})–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷}))) | ||
Theorem | s4f1o 13663 | A length 4 word with mutually different symbols is a one-to-one function onto the set of the symbols. (Contributed by Alexander van der Vekens, 14-Aug-2017.) |
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ∧ 𝐶 ≠ 𝐷)) → (𝐸 = 〈“𝐴𝐵𝐶𝐷”〉 → 𝐸:dom 𝐸–1-1-onto→({𝐴, 𝐵} ∪ {𝐶, 𝐷})))) | ||
Theorem | s4dom 13664 | The domain of a length 4 word is the union of two (disjunct) pairs. (Contributed by Alexander van der Vekens, 15-Aug-2017.) |
⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐸 = 〈“𝐴𝐵𝐶𝐷”〉 → dom 𝐸 = ({0, 1} ∪ {2, 3}))) | ||
Theorem | s2co 13665 | Mapping a doubleton word by a function. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐹:𝑋⟶𝑌) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹 ∘ 〈“𝐴𝐵”〉) = 〈“(𝐹‘𝐴)(𝐹‘𝐵)”〉) | ||
Theorem | s3co 13666 | Mapping a length 3 string by a function. (Contributed by Mario Carneiro, 27-Feb-2016.) |
⊢ (𝜑 → 𝐹:𝑋⟶𝑌) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹 ∘ 〈“𝐴𝐵𝐶”〉) = 〈“(𝐹‘𝐴)(𝐹‘𝐵)(𝐹‘𝐶)”〉) | ||
Theorem | s0s1 13667 | Concatenation of fixed length strings. (This special case of ccatlid 13369 is provided to complete the pattern s0s1 13667, df-s2 13593, df-s3 13594, ...) (Contributed by Mario Carneiro, 28-Feb-2016.) |
⊢ 〈“𝐴”〉 = (∅ ++ 〈“𝐴”〉) | ||
Theorem | s1s2 13668 | Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 〈“𝐴𝐵𝐶”〉 = (〈“𝐴”〉 ++ 〈“𝐵𝐶”〉) | ||
Theorem | s1s3 13669 | Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴”〉 ++ 〈“𝐵𝐶𝐷”〉) | ||
Theorem | s1s4 13670 | Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 〈“𝐴𝐵𝐶𝐷𝐸”〉 = (〈“𝐴”〉 ++ 〈“𝐵𝐶𝐷𝐸”〉) | ||
Theorem | s1s5 13671 | Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 = (〈“𝐴”〉 ++ 〈“𝐵𝐶𝐷𝐸𝐹”〉) | ||
Theorem | s1s6 13672 | Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (〈“𝐴”〉 ++ 〈“𝐵𝐶𝐷𝐸𝐹𝐺”〉) | ||
Theorem | s1s7 13673 | Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 = (〈“𝐴”〉 ++ 〈“𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉) | ||
Theorem | s2s2 13674 | Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶𝐷”〉) | ||
Theorem | s4s2 13675 | Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 = (〈“𝐴𝐵𝐶𝐷”〉 ++ 〈“𝐸𝐹”〉) | ||
Theorem | s4s3 13676 | Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (〈“𝐴𝐵𝐶𝐷”〉 ++ 〈“𝐸𝐹𝐺”〉) | ||
Theorem | s4s4 13677 | Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016.) |
⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 = (〈“𝐴𝐵𝐶𝐷”〉 ++ 〈“𝐸𝐹𝐺𝐻”〉) | ||
Theorem | s3s4 13678 | Concatenation of fixed length strings. (Contributed by AV, 1-Mar-2021.) |
⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷𝐸𝐹𝐺”〉) | ||
Theorem | s2s5 13679 | Concatenation of fixed length strings. (Contributed by AV, 1-Mar-2021.) |
⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶𝐷𝐸𝐹𝐺”〉) | ||
Theorem | s5s2 13680 | Concatenation of fixed length strings. (Contributed by AV, 1-Mar-2021.) |
⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (〈“𝐴𝐵𝐶𝐷𝐸”〉 ++ 〈“𝐹𝐺”〉) | ||
Theorem | s2eq2s1eq 13681 | Two length 2 words are equal iff the corresponding singleton words consisting of their symbols are equal. (Contributed by Alexander van der Vekens, 24-Sep-2018.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (〈“𝐴𝐵”〉 = 〈“𝐶𝐷”〉 ↔ (〈“𝐴”〉 = 〈“𝐶”〉 ∧ 〈“𝐵”〉 = 〈“𝐷”〉))) | ||
Theorem | s2eq2seq 13682 | Two length 2 words are equal iff the corresponding symbols are equal. (Contributed by AV, 20-Oct-2018.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) → (〈“𝐴𝐵”〉 = 〈“𝐶𝐷”〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
Theorem | s3eqs2s1eq 13683 | Two length 3 words are equal iff the corresponding length 2 words and singleton words consisting of their symbols are equal. (Contributed by AV, 4-Jan-2022.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉)) → (〈“𝐴𝐵𝐶”〉 = 〈“𝐷𝐸𝐹”〉 ↔ (〈“𝐴𝐵”〉 = 〈“𝐷𝐸”〉 ∧ 〈“𝐶”〉 = 〈“𝐹”〉))) | ||
Theorem | s3eq3seq 13684 | Two length 3 words are equal iff the corresponding symbols are equal. (Contributed by AV, 4-Jan-2022.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉)) → (〈“𝐴𝐵𝐶”〉 = 〈“𝐷𝐸𝐹”〉 ↔ (𝐴 = 𝐷 ∧ 𝐵 = 𝐸 ∧ 𝐶 = 𝐹))) | ||
Theorem | swrds2 13685 | Extract two adjacent symbols from a word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(#‘𝑊))) → (𝑊 substr 〈𝐼, (𝐼 + 2)〉) = 〈“(𝑊‘𝐼)(𝑊‘(𝐼 + 1))”〉) | ||
Theorem | wrdlen2i 13686 | Implications of a word of length 2. (Contributed by AV, 27-Jul-2018.) (Proof shortened by AV, 14-Oct-2018.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑉) → (𝑊 = {〈0, 𝑆〉, 〈1, 𝑇〉} → ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 2) ∧ ((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇)))) | ||
Theorem | wrd2pr2op 13687 | A word of length 2 represented as unordered pair of ordered pairs. (Contributed by AV, 20-Oct-2018.) (Proof shortened by AV, 26-Jan-2021.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 2) → 𝑊 = {〈0, (𝑊‘0)〉, 〈1, (𝑊‘1)〉}) | ||
Theorem | wrdlen2 13688 | A word of length 2. (Contributed by AV, 20-Oct-2018.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑉) → (𝑊 = {〈0, 𝑆〉, 〈1, 𝑇〉} ↔ ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 2) ∧ ((𝑊‘0) = 𝑆 ∧ (𝑊‘1) = 𝑇)))) | ||
Theorem | wrdlen2s2 13689 | A word of length 2 as doubleton word. (Contributed by AV, 20-Oct-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 2) → 𝑊 = 〈“(𝑊‘0)(𝑊‘1)”〉) | ||
Theorem | wrdl2exs2 13690* | A word of length 2 is a doubleton word. (Contributed by AV, 25-Jan-2021.) |
⊢ ((𝑊 ∈ Word 𝑆 ∧ (#‘𝑊) = 2) → ∃𝑠 ∈ 𝑆 ∃𝑡 ∈ 𝑆 𝑊 = 〈“𝑠𝑡”〉) | ||
Theorem | wrd3tpop 13691 | A word of length 3 represented as triple of ordered pairs. (Contributed by AV, 26-Jan-2021.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 3) → 𝑊 = {〈0, (𝑊‘0)〉, 〈1, (𝑊‘1)〉, 〈2, (𝑊‘2)〉}) | ||
Theorem | wrdlen3s3 13692 | A word of length 3 as length 3 string. (Contributed by AV, 26-Jan-2021.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 3) → 𝑊 = 〈“(𝑊‘0)(𝑊‘1)(𝑊‘2)”〉) | ||
Theorem | repsw2 13693 | The "repeated symbol word" of length 2. (Contributed by AV, 6-Nov-2018.) |
⊢ (𝑆 ∈ 𝑉 → (𝑆 repeatS 2) = 〈“𝑆𝑆”〉) | ||
Theorem | repsw3 13694 | The "repeated symbol word" of length 3. (Contributed by AV, 6-Nov-2018.) |
⊢ (𝑆 ∈ 𝑉 → (𝑆 repeatS 3) = 〈“𝑆𝑆𝑆”〉) | ||
Theorem | swrd2lsw 13695 | Extract the last two symbols from a word. (Contributed by Alexander van der Vekens, 23-Sep-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) → (𝑊 substr 〈((#‘𝑊) − 2), (#‘𝑊)〉) = 〈“(𝑊‘((#‘𝑊) − 2))( lastS ‘𝑊)”〉) | ||
Theorem | 2swrd2eqwrdeq 13696 | Two words of length at least 2 are equal if and only if they have the same prefix and the same two single symbols suffix. (Contributed by AV, 24-Sep-2018.) (Revised by Mario Carneiro/AV, 23-Oct-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ 1 < (#‘𝑊)) → (𝑊 = 𝑈 ↔ ((#‘𝑊) = (#‘𝑈) ∧ ((𝑊 substr 〈0, ((#‘𝑊) − 2)〉) = (𝑈 substr 〈0, ((#‘𝑊) − 2)〉) ∧ (𝑊‘((#‘𝑊) − 2)) = (𝑈‘((#‘𝑊) − 2)) ∧ ( lastS ‘𝑊) = ( lastS ‘𝑈))))) | ||
Theorem | ccatw2s1ccatws2 13697 | The concatenation of a word with two singleton words equals the concatenation of the word with the doubleton word consisting of the symbols of the two singletons. (Contributed by Mario Carneiro/AV, 21-Oct-2018.) |
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) = (𝑊 ++ 〈“𝑋𝑌”〉)) | ||
Theorem | ccat2s1fvwALT 13698 | Alternate proof of ccat2s1fvw 13415 using words of length 2, see df-s2 13593. A symbol of the concatenation of a word with two single symbols corresponding to the symbol of the word. (Contributed by AV, 22-Sep-2018.) (Proof shortened by Mario Carneiro/AV, 21-Oct-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < (#‘𝑊)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘𝐼) = (𝑊‘𝐼)) | ||
Theorem | wwlktovf 13699* | Lemma 1 for wrd2f1tovbij 13703. (Contributed by Alexander van der Vekens, 27-Jul-2018.) |
⊢ 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((#‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} & ⊢ 𝑅 = {𝑛 ∈ 𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋} & ⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝑡‘1)) ⇒ ⊢ 𝐹:𝐷⟶𝑅 | ||
Theorem | wwlktovf1 13700* | Lemma 2 for wrd2f1tovbij 13703. (Contributed by Alexander van der Vekens, 27-Jul-2018.) |
⊢ 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((#‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} & ⊢ 𝑅 = {𝑛 ∈ 𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋} & ⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝑡‘1)) ⇒ ⊢ 𝐹:𝐷–1-1→𝑅 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |