MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgtf Structured version   Visualization version   GIF version

Theorem efgtf 18135
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
Assertion
Ref Expression
efgtf (𝑋𝑊 → ((𝑇𝑋) = (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∧ (𝑇𝑋):((0...(#‘𝑋)) × (𝐼 × 2𝑜))⟶𝑊))
Distinct variable groups:   𝑎,𝑏,𝑦,𝑧   𝑣,𝑛,𝑤,𝑦,𝑧,𝑎   𝑀,𝑎   𝑛,𝑏,𝑣,𝑤,𝑀   𝑇,𝑎,𝑏   𝑋,𝑎,𝑏   𝑊,𝑎,𝑏,𝑛,𝑣,𝑤,𝑦,𝑧   ,𝑎,𝑏,𝑦,𝑧   𝐼,𝑎,𝑏,𝑛,𝑣,𝑤,𝑦,𝑧
Allowed substitution hints:   (𝑤,𝑣,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑀(𝑦,𝑧)   𝑋(𝑦,𝑧,𝑤,𝑣,𝑛)

Proof of Theorem efgtf
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . . . 10 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
2 fviss 6256 . . . . . . . . . 10 ( I ‘Word (𝐼 × 2𝑜)) ⊆ Word (𝐼 × 2𝑜)
31, 2eqsstri 3635 . . . . . . . . 9 𝑊 ⊆ Word (𝐼 × 2𝑜)
4 simpl 473 . . . . . . . . 9 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → 𝑋𝑊)
53, 4sseldi 3601 . . . . . . . 8 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → 𝑋 ∈ Word (𝐼 × 2𝑜))
6 simprr 796 . . . . . . . . 9 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → 𝑏 ∈ (𝐼 × 2𝑜))
7 efgval2.m . . . . . . . . . . . 12 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
87efgmf 18126 . . . . . . . . . . 11 𝑀:(𝐼 × 2𝑜)⟶(𝐼 × 2𝑜)
98ffvelrni 6358 . . . . . . . . . 10 (𝑏 ∈ (𝐼 × 2𝑜) → (𝑀𝑏) ∈ (𝐼 × 2𝑜))
109ad2antll 765 . . . . . . . . 9 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → (𝑀𝑏) ∈ (𝐼 × 2𝑜))
116, 10s2cld 13616 . . . . . . . 8 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → ⟨“𝑏(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2𝑜))
12 splcl 13503 . . . . . . . 8 ((𝑋 ∈ Word (𝐼 × 2𝑜) ∧ ⟨“𝑏(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2𝑜)) → (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) ∈ Word (𝐼 × 2𝑜))
135, 11, 12syl2anc 693 . . . . . . 7 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) ∈ Word (𝐼 × 2𝑜))
141efgrcl 18128 . . . . . . . . 9 (𝑋𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2𝑜)))
1514simprd 479 . . . . . . . 8 (𝑋𝑊𝑊 = Word (𝐼 × 2𝑜))
1615adantr 481 . . . . . . 7 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → 𝑊 = Word (𝐼 × 2𝑜))
1713, 16eleqtrrd 2704 . . . . . 6 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)) ∧ 𝑏 ∈ (𝐼 × 2𝑜))) → (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) ∈ 𝑊)
1817ralrimivva 2971 . . . . 5 (𝑋𝑊 → ∀𝑎 ∈ (0...(#‘𝑋))∀𝑏 ∈ (𝐼 × 2𝑜)(𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) ∈ 𝑊)
19 eqid 2622 . . . . . 6 (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) = (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))
2019fmpt2 7237 . . . . 5 (∀𝑎 ∈ (0...(#‘𝑋))∀𝑏 ∈ (𝐼 × 2𝑜)(𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) ∈ 𝑊 ↔ (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)):((0...(#‘𝑋)) × (𝐼 × 2𝑜))⟶𝑊)
2118, 20sylib 208 . . . 4 (𝑋𝑊 → (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)):((0...(#‘𝑋)) × (𝐼 × 2𝑜))⟶𝑊)
22 ovex 6678 . . . . 5 (0...(#‘𝑋)) ∈ V
2314simpld 475 . . . . . 6 (𝑋𝑊𝐼 ∈ V)
24 2on 7568 . . . . . 6 2𝑜 ∈ On
25 xpexg 6960 . . . . . 6 ((𝐼 ∈ V ∧ 2𝑜 ∈ On) → (𝐼 × 2𝑜) ∈ V)
2623, 24, 25sylancl 694 . . . . 5 (𝑋𝑊 → (𝐼 × 2𝑜) ∈ V)
27 xpexg 6960 . . . . 5 (((0...(#‘𝑋)) ∈ V ∧ (𝐼 × 2𝑜) ∈ V) → ((0...(#‘𝑋)) × (𝐼 × 2𝑜)) ∈ V)
2822, 26, 27sylancr 695 . . . 4 (𝑋𝑊 → ((0...(#‘𝑋)) × (𝐼 × 2𝑜)) ∈ V)
29 fvex 6201 . . . . . 6 ( I ‘Word (𝐼 × 2𝑜)) ∈ V
301, 29eqeltri 2697 . . . . 5 𝑊 ∈ V
3130a1i 11 . . . 4 (𝑋𝑊𝑊 ∈ V)
32 fex2 7121 . . . 4 (((𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)):((0...(#‘𝑋)) × (𝐼 × 2𝑜))⟶𝑊 ∧ ((0...(#‘𝑋)) × (𝐼 × 2𝑜)) ∈ V ∧ 𝑊 ∈ V) → (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∈ V)
3321, 28, 31, 32syl3anc 1326 . . 3 (𝑋𝑊 → (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∈ V)
34 fveq2 6191 . . . . . 6 (𝑢 = 𝑋 → (#‘𝑢) = (#‘𝑋))
3534oveq2d 6666 . . . . 5 (𝑢 = 𝑋 → (0...(#‘𝑢)) = (0...(#‘𝑋)))
36 eqidd 2623 . . . . 5 (𝑢 = 𝑋 → (𝐼 × 2𝑜) = (𝐼 × 2𝑜))
37 oveq1 6657 . . . . 5 (𝑢 = 𝑋 → (𝑢 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) = (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))
3835, 36, 37mpt2eq123dv 6717 . . . 4 (𝑢 = 𝑋 → (𝑎 ∈ (0...(#‘𝑢)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑢 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) = (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
39 efgval2.t . . . . 5 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
40 oteq1 4411 . . . . . . . . . 10 (𝑛 = 𝑎 → ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩ = ⟨𝑎, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)
41 oteq2 4412 . . . . . . . . . 10 (𝑛 = 𝑎 → ⟨𝑎, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩ = ⟨𝑎, 𝑎, ⟨“𝑤(𝑀𝑤)”⟩⟩)
4240, 41eqtrd 2656 . . . . . . . . 9 (𝑛 = 𝑎 → ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩ = ⟨𝑎, 𝑎, ⟨“𝑤(𝑀𝑤)”⟩⟩)
4342oveq2d 6666 . . . . . . . 8 (𝑛 = 𝑎 → (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩) = (𝑣 splice ⟨𝑎, 𝑎, ⟨“𝑤(𝑀𝑤)”⟩⟩))
44 id 22 . . . . . . . . . . 11 (𝑤 = 𝑏𝑤 = 𝑏)
45 fveq2 6191 . . . . . . . . . . 11 (𝑤 = 𝑏 → (𝑀𝑤) = (𝑀𝑏))
4644, 45s2eqd 13608 . . . . . . . . . 10 (𝑤 = 𝑏 → ⟨“𝑤(𝑀𝑤)”⟩ = ⟨“𝑏(𝑀𝑏)”⟩)
4746oteq3d 4416 . . . . . . . . 9 (𝑤 = 𝑏 → ⟨𝑎, 𝑎, ⟨“𝑤(𝑀𝑤)”⟩⟩ = ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)
4847oveq2d 6666 . . . . . . . 8 (𝑤 = 𝑏 → (𝑣 splice ⟨𝑎, 𝑎, ⟨“𝑤(𝑀𝑤)”⟩⟩) = (𝑣 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))
4943, 48cbvmpt2v 6735 . . . . . . 7 (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)) = (𝑎 ∈ (0...(#‘𝑣)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))
50 fveq2 6191 . . . . . . . . 9 (𝑣 = 𝑢 → (#‘𝑣) = (#‘𝑢))
5150oveq2d 6666 . . . . . . . 8 (𝑣 = 𝑢 → (0...(#‘𝑣)) = (0...(#‘𝑢)))
52 eqidd 2623 . . . . . . . 8 (𝑣 = 𝑢 → (𝐼 × 2𝑜) = (𝐼 × 2𝑜))
53 oveq1 6657 . . . . . . . 8 (𝑣 = 𝑢 → (𝑣 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩) = (𝑢 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩))
5451, 52, 53mpt2eq123dv 6717 . . . . . . 7 (𝑣 = 𝑢 → (𝑎 ∈ (0...(#‘𝑣)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) = (𝑎 ∈ (0...(#‘𝑢)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑢 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
5549, 54syl5eq 2668 . . . . . 6 (𝑣 = 𝑢 → (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)) = (𝑎 ∈ (0...(#‘𝑢)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑢 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
5655cbvmptv 4750 . . . . 5 (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩))) = (𝑢𝑊 ↦ (𝑎 ∈ (0...(#‘𝑢)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑢 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
5739, 56eqtri 2644 . . . 4 𝑇 = (𝑢𝑊 ↦ (𝑎 ∈ (0...(#‘𝑢)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑢 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
5838, 57fvmptg 6280 . . 3 ((𝑋𝑊 ∧ (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∈ V) → (𝑇𝑋) = (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
5933, 58mpdan 702 . 2 (𝑋𝑊 → (𝑇𝑋) = (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)))
6059feq1d 6030 . . 3 (𝑋𝑊 → ((𝑇𝑋):((0...(#‘𝑋)) × (𝐼 × 2𝑜))⟶𝑊 ↔ (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)):((0...(#‘𝑋)) × (𝐼 × 2𝑜))⟶𝑊))
6121, 60mpbird 247 . 2 (𝑋𝑊 → (𝑇𝑋):((0...(#‘𝑋)) × (𝐼 × 2𝑜))⟶𝑊)
6259, 61jca 554 1 (𝑋𝑊 → ((𝑇𝑋) = (𝑎 ∈ (0...(#‘𝑋)), 𝑏 ∈ (𝐼 × 2𝑜) ↦ (𝑋 splice ⟨𝑎, 𝑎, ⟨“𝑏(𝑀𝑏)”⟩⟩)) ∧ (𝑇𝑋):((0...(#‘𝑋)) × (𝐼 × 2𝑜))⟶𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cdif 3571  cop 4183  cotp 4185  cmpt 4729   I cid 5023   × cxp 5112  Oncon0 5723  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  1𝑜c1o 7553  2𝑜c2o 7554  0cc0 9936  ...cfz 12326  #chash 13117  Word cword 13291   splice csplice 13296  ⟨“cs2 13586   ~FG cefg 18119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-s2 13593
This theorem is referenced by:  efgtval  18136  efgval2  18137  efgtlen  18139  efginvrel2  18140  efgsp1  18150  efgredleme  18156  efgredlem  18160  efgrelexlemb  18163  efgcpbllemb  18168  frgpnabllem1  18276
  Copyright terms: Public domain W3C validator