Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  saluni Structured version   Visualization version   GIF version

Theorem saluni 40544
Description: A set is an element of any sigma-algebra on it . (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
saluni (𝑆 ∈ SAlg → 𝑆𝑆)

Proof of Theorem saluni
StepHypRef Expression
1 dif0 3950 . 2 ( 𝑆 ∖ ∅) = 𝑆
2 0sal 40540 . . 3 (𝑆 ∈ SAlg → ∅ ∈ 𝑆)
3 saldifcl 40539 . . 3 ((𝑆 ∈ SAlg ∧ ∅ ∈ 𝑆) → ( 𝑆 ∖ ∅) ∈ 𝑆)
42, 3mpdan 702 . 2 (𝑆 ∈ SAlg → ( 𝑆 ∖ ∅) ∈ 𝑆)
51, 4syl5eqelr 2706 1 (𝑆 ∈ SAlg → 𝑆𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1990  cdif 3571  c0 3915   cuni 4436  SAlgcsalg 40528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-uni 4437  df-salg 40529
This theorem is referenced by:  intsaluni  40547  unisalgen  40558  salgencntex  40561  salunid  40571
  Copyright terms: Public domain W3C validator