![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > saldifcl | Structured version Visualization version GIF version |
Description: The complement of an element of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
saldifcl | ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq2 3722 | . . 3 ⊢ (𝑦 = 𝐸 → (∪ 𝑆 ∖ 𝑦) = (∪ 𝑆 ∖ 𝐸)) | |
2 | 1 | eleq1d 2686 | . 2 ⊢ (𝑦 = 𝐸 → ((∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ↔ (∪ 𝑆 ∖ 𝐸) ∈ 𝑆)) |
3 | issal 40534 | . . . . 5 ⊢ (𝑆 ∈ SAlg → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) | |
4 | 3 | ibi 256 | . . . 4 ⊢ (𝑆 ∈ SAlg → (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆))) |
5 | 4 | simp2d 1074 | . . 3 ⊢ (𝑆 ∈ SAlg → ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆) |
6 | 5 | adantr 481 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆) |
7 | simpr 477 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → 𝐸 ∈ 𝑆) | |
8 | 2, 6, 7 | rspcdva 3316 | 1 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∖ cdif 3571 ∅c0 3915 𝒫 cpw 4158 ∪ cuni 4436 class class class wbr 4653 ωcom 7065 ≼ cdom 7953 SAlgcsalg 40528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-pw 4160 df-uni 4437 df-salg 40529 |
This theorem is referenced by: salincl 40543 saluni 40544 saliincl 40545 saldifcl2 40546 intsal 40548 saldifcld 40565 |
Copyright terms: Public domain | W3C validator |