Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0sal Structured version   Visualization version   GIF version

Theorem 0sal 40540
Description: The empty set belongs to every sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
0sal (𝑆 ∈ SAlg → ∅ ∈ 𝑆)

Proof of Theorem 0sal
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 issal 40534 . . 3 (𝑆 ∈ SAlg → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))))
21ibi 256 . 2 (𝑆 ∈ SAlg → (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆)))
32simp1d 1073 1 (𝑆 ∈ SAlg → ∅ ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1037  wcel 1990  wral 2912  cdif 3571  c0 3915  𝒫 cpw 4158   cuni 4436   class class class wbr 4653  ωcom 7065  cdom 7953  SAlgcsalg 40528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-pw 4160  df-uni 4437  df-salg 40529
This theorem is referenced by:  saluni  40544  intsal  40548  0sald  40568  ismeannd  40684
  Copyright terms: Public domain W3C validator