MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcie3s Structured version   Visualization version   Unicode version

Theorem sbcie3s 15917
Description: A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
sbcie3s.a  |-  A  =  ( E `  W
)
sbcie3s.b  |-  B  =  ( F `  W
)
sbcie3s.c  |-  C  =  ( G `  W
)
sbcie3s.1  |-  ( ( a  =  A  /\  b  =  B  /\  c  =  C )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
sbcie3s  |-  ( w  =  W  ->  ( [. ( E `  w
)  /  a ]. [. ( F `  w
)  /  b ]. [. ( G `  w
)  /  c ]. ps 
<-> 
ph ) )
Distinct variable groups:    a, b,
c, w    E, a,
b, c    F, b,
c    G, c    W, a, b, c    ph, a,
b, c
Allowed substitution hints:    ph( w)    ps( w, a, b, c)    A( w, a, b, c)    B( w, a, b, c)    C( w, a, b, c)    E( w)    F( w, a)    G( w, a, b)    W( w)

Proof of Theorem sbcie3s
StepHypRef Expression
1 fvexd 6203 . 2  |-  ( w  =  W  ->  ( E `  w )  e.  _V )
2 fvexd 6203 . . 3  |-  ( ( w  =  W  /\  a  =  ( E `  w ) )  -> 
( F `  w
)  e.  _V )
3 fvexd 6203 . . . 4  |-  ( ( ( w  =  W  /\  a  =  ( E `  w ) )  /\  b  =  ( F `  w
) )  ->  ( G `  w )  e.  _V )
4 simpllr 799 . . . . . . . 8  |-  ( ( ( ( w  =  W  /\  a  =  ( E `  w
) )  /\  b  =  ( F `  w ) )  /\  c  =  ( G `  w ) )  -> 
a  =  ( E `
 w ) )
5 fveq2 6191 . . . . . . . . 9  |-  ( w  =  W  ->  ( E `  w )  =  ( E `  W ) )
65ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( w  =  W  /\  a  =  ( E `  w
) )  /\  b  =  ( F `  w ) )  /\  c  =  ( G `  w ) )  -> 
( E `  w
)  =  ( E `
 W ) )
74, 6eqtrd 2656 . . . . . . 7  |-  ( ( ( ( w  =  W  /\  a  =  ( E `  w
) )  /\  b  =  ( F `  w ) )  /\  c  =  ( G `  w ) )  -> 
a  =  ( E `
 W ) )
8 sbcie3s.a . . . . . . 7  |-  A  =  ( E `  W
)
97, 8syl6eqr 2674 . . . . . 6  |-  ( ( ( ( w  =  W  /\  a  =  ( E `  w
) )  /\  b  =  ( F `  w ) )  /\  c  =  ( G `  w ) )  -> 
a  =  A )
10 simplr 792 . . . . . . . 8  |-  ( ( ( ( w  =  W  /\  a  =  ( E `  w
) )  /\  b  =  ( F `  w ) )  /\  c  =  ( G `  w ) )  -> 
b  =  ( F `
 w ) )
11 fveq2 6191 . . . . . . . . 9  |-  ( w  =  W  ->  ( F `  w )  =  ( F `  W ) )
1211ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( w  =  W  /\  a  =  ( E `  w
) )  /\  b  =  ( F `  w ) )  /\  c  =  ( G `  w ) )  -> 
( F `  w
)  =  ( F `
 W ) )
1310, 12eqtrd 2656 . . . . . . 7  |-  ( ( ( ( w  =  W  /\  a  =  ( E `  w
) )  /\  b  =  ( F `  w ) )  /\  c  =  ( G `  w ) )  -> 
b  =  ( F `
 W ) )
14 sbcie3s.b . . . . . . 7  |-  B  =  ( F `  W
)
1513, 14syl6eqr 2674 . . . . . 6  |-  ( ( ( ( w  =  W  /\  a  =  ( E `  w
) )  /\  b  =  ( F `  w ) )  /\  c  =  ( G `  w ) )  -> 
b  =  B )
16 simpr 477 . . . . . . . 8  |-  ( ( ( ( w  =  W  /\  a  =  ( E `  w
) )  /\  b  =  ( F `  w ) )  /\  c  =  ( G `  w ) )  -> 
c  =  ( G `
 w ) )
17 fveq2 6191 . . . . . . . . 9  |-  ( w  =  W  ->  ( G `  w )  =  ( G `  W ) )
1817ad3antrrr 766 . . . . . . . 8  |-  ( ( ( ( w  =  W  /\  a  =  ( E `  w
) )  /\  b  =  ( F `  w ) )  /\  c  =  ( G `  w ) )  -> 
( G `  w
)  =  ( G `
 W ) )
1916, 18eqtrd 2656 . . . . . . 7  |-  ( ( ( ( w  =  W  /\  a  =  ( E `  w
) )  /\  b  =  ( F `  w ) )  /\  c  =  ( G `  w ) )  -> 
c  =  ( G `
 W ) )
20 sbcie3s.c . . . . . . 7  |-  C  =  ( G `  W
)
2119, 20syl6eqr 2674 . . . . . 6  |-  ( ( ( ( w  =  W  /\  a  =  ( E `  w
) )  /\  b  =  ( F `  w ) )  /\  c  =  ( G `  w ) )  -> 
c  =  C )
22 sbcie3s.1 . . . . . 6  |-  ( ( a  =  A  /\  b  =  B  /\  c  =  C )  ->  ( ph  <->  ps )
)
239, 15, 21, 22syl3anc 1326 . . . . 5  |-  ( ( ( ( w  =  W  /\  a  =  ( E `  w
) )  /\  b  =  ( F `  w ) )  /\  c  =  ( G `  w ) )  -> 
( ph  <->  ps ) )
2423bicomd 213 . . . 4  |-  ( ( ( ( w  =  W  /\  a  =  ( E `  w
) )  /\  b  =  ( F `  w ) )  /\  c  =  ( G `  w ) )  -> 
( ps  <->  ph ) )
253, 24sbcied 3472 . . 3  |-  ( ( ( w  =  W  /\  a  =  ( E `  w ) )  /\  b  =  ( F `  w
) )  ->  ( [. ( G `  w
)  /  c ]. ps 
<-> 
ph ) )
262, 25sbcied 3472 . 2  |-  ( ( w  =  W  /\  a  =  ( E `  w ) )  -> 
( [. ( F `  w )  /  b ]. [. ( G `  w )  /  c ]. ps  <->  ph ) )
271, 26sbcied 3472 1  |-  ( w  =  W  ->  ( [. ( E `  w
)  /  a ]. [. ( F `  w
)  /  b ]. [. ( G `  w
)  /  c ]. ps 
<-> 
ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   _Vcvv 3200   [.wsbc 3435   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896
This theorem is referenced by:  istrkgcb  25355  istrkgld  25358  legval  25479  istrkg2d  30744  afsval  30749
  Copyright terms: Public domain W3C validator