MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatmat Structured version   Visualization version   GIF version

Theorem scmatmat 20315
Description: An 𝑁 x 𝑁 scalar matrix over (the ring) 𝑅 is an 𝑁 x 𝑁 matrix over (the ring) 𝑅. (Contributed by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
scmatmat.a 𝐴 = (𝑁 Mat 𝑅)
scmatmat.b 𝐵 = (Base‘𝐴)
scmatmat.s 𝑆 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmatmat ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝑆𝑀𝐵))

Proof of Theorem scmatmat
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 scmatmat.a . . 3 𝐴 = (𝑁 Mat 𝑅)
3 scmatmat.b . . 3 𝐵 = (Base‘𝐴)
4 eqid 2622 . . 3 (1r𝐴) = (1r𝐴)
5 eqid 2622 . . 3 ( ·𝑠𝐴) = ( ·𝑠𝐴)
6 scmatmat.s . . 3 𝑆 = (𝑁 ScMat 𝑅)
71, 2, 3, 4, 5, 6scmatel 20311 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝑆 ↔ (𝑀𝐵 ∧ ∃𝑐 ∈ (Base‘𝑅)𝑀 = (𝑐( ·𝑠𝐴)(1r𝐴)))))
8 simpl 473 . 2 ((𝑀𝐵 ∧ ∃𝑐 ∈ (Base‘𝑅)𝑀 = (𝑐( ·𝑠𝐴)(1r𝐴))) → 𝑀𝐵)
97, 8syl6bi 243 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝑆𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wrex 2913  cfv 5888  (class class class)co 6650  Fincfn 7955  Basecbs 15857   ·𝑠 cvsca 15945  1rcur 18501   Mat cmat 20213   ScMat cscmat 20295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-scmat 20297
This theorem is referenced by:  scmatsgrp  20325  scmatcrng  20327
  Copyright terms: Public domain W3C validator