Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sconnpht Structured version   Visualization version   GIF version

Theorem sconnpht 31211
Description: A closed path in a simply connected space is contractible to a point. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
sconnpht ((𝐽 ∈ SConn ∧ 𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = (𝐹‘1)) → 𝐹( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))

Proof of Theorem sconnpht
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 issconn 31208 . . 3 (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))))
2 fveq1 6190 . . . . . 6 (𝑓 = 𝐹 → (𝑓‘0) = (𝐹‘0))
3 fveq1 6190 . . . . . 6 (𝑓 = 𝐹 → (𝑓‘1) = (𝐹‘1))
42, 3eqeq12d 2637 . . . . 5 (𝑓 = 𝐹 → ((𝑓‘0) = (𝑓‘1) ↔ (𝐹‘0) = (𝐹‘1)))
5 id 22 . . . . . 6 (𝑓 = 𝐹𝑓 = 𝐹)
62sneqd 4189 . . . . . . 7 (𝑓 = 𝐹 → {(𝑓‘0)} = {(𝐹‘0)})
76xpeq2d 5139 . . . . . 6 (𝑓 = 𝐹 → ((0[,]1) × {(𝑓‘0)}) = ((0[,]1) × {(𝐹‘0)}))
85, 7breq12d 4666 . . . . 5 (𝑓 = 𝐹 → (𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}) ↔ 𝐹( ≃ph𝐽)((0[,]1) × {(𝐹‘0)})))
94, 8imbi12d 334 . . . 4 (𝑓 = 𝐹 → (((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)})) ↔ ((𝐹‘0) = (𝐹‘1) → 𝐹( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))))
109rspccv 3306 . . 3 (∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)})) → (𝐹 ∈ (II Cn 𝐽) → ((𝐹‘0) = (𝐹‘1) → 𝐹( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))))
111, 10simplbiim 659 . 2 (𝐽 ∈ SConn → (𝐹 ∈ (II Cn 𝐽) → ((𝐹‘0) = (𝐹‘1) → 𝐹( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))))
12113imp 1256 1 ((𝐽 ∈ SConn ∧ 𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = (𝐹‘1)) → 𝐹( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1037   = wceq 1483  wcel 1990  wral 2912  {csn 4177   class class class wbr 4653   × cxp 5112  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937  [,]cicc 12178   Cn ccn 21028  IIcii 22678  phcphtpc 22768  PConncpconn 31201  SConncsconn 31202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-iota 5851  df-fv 5896  df-ov 6653  df-sconn 31204
This theorem is referenced by:  sconnpht2  31220  sconnpi1  31221  txsconn  31223
  Copyright terms: Public domain W3C validator