![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sconnpht | Structured version Visualization version GIF version |
Description: A closed path in a simply connected space is contractible to a point. (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
sconnpht | ⊢ ((𝐽 ∈ SConn ∧ 𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = (𝐹‘1)) → 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issconn 31208 | . . 3 ⊢ (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})))) | |
2 | fveq1 6190 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘0) = (𝐹‘0)) | |
3 | fveq1 6190 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘1) = (𝐹‘1)) | |
4 | 2, 3 | eqeq12d 2637 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓‘0) = (𝑓‘1) ↔ (𝐹‘0) = (𝐹‘1))) |
5 | id 22 | . . . . . 6 ⊢ (𝑓 = 𝐹 → 𝑓 = 𝐹) | |
6 | 2 | sneqd 4189 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → {(𝑓‘0)} = {(𝐹‘0)}) |
7 | 6 | xpeq2d 5139 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((0[,]1) × {(𝑓‘0)}) = ((0[,]1) × {(𝐹‘0)})) |
8 | 5, 7 | breq12d 4666 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)}) ↔ 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)}))) |
9 | 4, 8 | imbi12d 334 | . . . 4 ⊢ (𝑓 = 𝐹 → (((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})) ↔ ((𝐹‘0) = (𝐹‘1) → 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})))) |
10 | 9 | rspccv 3306 | . . 3 ⊢ (∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})) → (𝐹 ∈ (II Cn 𝐽) → ((𝐹‘0) = (𝐹‘1) → 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})))) |
11 | 1, 10 | simplbiim 659 | . 2 ⊢ (𝐽 ∈ SConn → (𝐹 ∈ (II Cn 𝐽) → ((𝐹‘0) = (𝐹‘1) → 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})))) |
12 | 11 | 3imp 1256 | 1 ⊢ ((𝐽 ∈ SConn ∧ 𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = (𝐹‘1)) → 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∀wral 2912 {csn 4177 class class class wbr 4653 × cxp 5112 ‘cfv 5888 (class class class)co 6650 0cc0 9936 1c1 9937 [,]cicc 12178 Cn ccn 21028 IIcii 22678 ≃phcphtpc 22768 PConncpconn 31201 SConncsconn 31202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-iota 5851 df-fv 5896 df-ov 6653 df-sconn 31204 |
This theorem is referenced by: sconnpht2 31220 sconnpi1 31221 txsconn 31223 |
Copyright terms: Public domain | W3C validator |