Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sconnpht Structured version   Visualization version   Unicode version

Theorem sconnpht 31211
Description: A closed path in a simply connected space is contractible to a point. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
sconnpht  |-  ( ( J  e. SConn  /\  F  e.  ( II  Cn  J
)  /\  ( F `  0 )  =  ( F `  1
) )  ->  F
(  ~=ph  `  J )
( ( 0 [,] 1 )  X.  {
( F `  0
) } ) )

Proof of Theorem sconnpht
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 issconn 31208 . . 3  |-  ( J  e. SConn 
<->  ( J  e. PConn  /\  A. f  e.  ( II  Cn  J ) ( ( f `  0 )  =  ( f ` 
1 )  ->  f
(  ~=ph  `  J )
( ( 0 [,] 1 )  X.  {
( f `  0
) } ) ) ) )
2 fveq1 6190 . . . . . 6  |-  ( f  =  F  ->  (
f `  0 )  =  ( F ` 
0 ) )
3 fveq1 6190 . . . . . 6  |-  ( f  =  F  ->  (
f `  1 )  =  ( F ` 
1 ) )
42, 3eqeq12d 2637 . . . . 5  |-  ( f  =  F  ->  (
( f `  0
)  =  ( f `
 1 )  <->  ( F `  0 )  =  ( F `  1
) ) )
5 id 22 . . . . . 6  |-  ( f  =  F  ->  f  =  F )
62sneqd 4189 . . . . . . 7  |-  ( f  =  F  ->  { ( f `  0 ) }  =  { ( F `  0 ) } )
76xpeq2d 5139 . . . . . 6  |-  ( f  =  F  ->  (
( 0 [,] 1
)  X.  { ( f `  0 ) } )  =  ( ( 0 [,] 1
)  X.  { ( F `  0 ) } ) )
85, 7breq12d 4666 . . . . 5  |-  ( f  =  F  ->  (
f (  ~=ph  `  J
) ( ( 0 [,] 1 )  X. 
{ ( f ` 
0 ) } )  <-> 
F (  ~=ph  `  J
) ( ( 0 [,] 1 )  X. 
{ ( F ` 
0 ) } ) ) )
94, 8imbi12d 334 . . . 4  |-  ( f  =  F  ->  (
( ( f ` 
0 )  =  ( f `  1 )  ->  f (  ~=ph  `  J ) ( ( 0 [,] 1 )  X.  { ( f `
 0 ) } ) )  <->  ( ( F `  0 )  =  ( F ` 
1 )  ->  F
(  ~=ph  `  J )
( ( 0 [,] 1 )  X.  {
( F `  0
) } ) ) ) )
109rspccv 3306 . . 3  |-  ( A. f  e.  ( II  Cn  J ) ( ( f `  0 )  =  ( f ` 
1 )  ->  f
(  ~=ph  `  J )
( ( 0 [,] 1 )  X.  {
( f `  0
) } ) )  ->  ( F  e.  ( II  Cn  J
)  ->  ( ( F `  0 )  =  ( F ` 
1 )  ->  F
(  ~=ph  `  J )
( ( 0 [,] 1 )  X.  {
( F `  0
) } ) ) ) )
111, 10simplbiim 659 . 2  |-  ( J  e. SConn  ->  ( F  e.  ( II  Cn  J
)  ->  ( ( F `  0 )  =  ( F ` 
1 )  ->  F
(  ~=ph  `  J )
( ( 0 [,] 1 )  X.  {
( F `  0
) } ) ) ) )
12113imp 1256 1  |-  ( ( J  e. SConn  /\  F  e.  ( II  Cn  J
)  /\  ( F `  0 )  =  ( F `  1
) )  ->  F
(  ~=ph  `  J )
( ( 0 [,] 1 )  X.  {
( F `  0
) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {csn 4177   class class class wbr 4653    X. cxp 5112   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937   [,]cicc 12178    Cn ccn 21028   IIcii 22678    ~=ph cphtpc 22768  PConncpconn 31201  SConncsconn 31202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-iota 5851  df-fv 5896  df-ov 6653  df-sconn 31204
This theorem is referenced by:  sconnpht2  31220  sconnpi1  31221  txsconn  31223
  Copyright terms: Public domain W3C validator