Proof of Theorem seqval
| Step | Hyp | Ref
| Expression |
| 1 | | df-ima 5127 |
. 2
⊢
(rec((𝑥 ∈ V,
𝑦 ∈ V ↦
〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) = ran (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) ↾ ω) |
| 2 | | df-seq 12802 |
. 2
⊢ seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) |
| 3 | | seqval.1 |
. . . 4
⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) ↾ ω) |
| 4 | | eqid 2622 |
. . . . . . 7
⊢ V =
V |
| 5 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
| 6 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
| 7 | | oveq1 6657 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑥 → (𝑧 + 1) = (𝑥 + 1)) |
| 8 | 7 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → (𝐹‘(𝑧 + 1)) = (𝐹‘(𝑥 + 1))) |
| 9 | 8 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘(𝑥 + 1)))) |
| 10 | | oveq1 6657 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → (𝑤 + (𝐹‘(𝑥 + 1))) = (𝑦 + (𝐹‘(𝑥 + 1)))) |
| 11 | | eqid 2622 |
. . . . . . . . . 10
⊢ (𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) |
| 12 | | ovex 6678 |
. . . . . . . . . 10
⊢ (𝑦 + (𝐹‘(𝑥 + 1))) ∈ V |
| 13 | 9, 10, 11, 12 | ovmpt2 6796 |
. . . . . . . . 9
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = (𝑦 + (𝐹‘(𝑥 + 1)))) |
| 14 | 5, 6, 13 | mp2an 708 |
. . . . . . . 8
⊢ (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = (𝑦 + (𝐹‘(𝑥 + 1))) |
| 15 | 14 | opeq2i 4406 |
. . . . . . 7
⊢
〈(𝑥 + 1),
(𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉 = 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉 |
| 16 | 4, 4, 15 | mpt2eq123i 6718 |
. . . . . 6
⊢ (𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉) = (𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉) |
| 17 | | rdgeq1 7507 |
. . . . . 6
⊢ ((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉) = (𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉) → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)) |
| 18 | 16, 17 | ax-mp 5 |
. . . . 5
⊢
rec((𝑥 ∈ V,
𝑦 ∈ V ↦
〈(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) |
| 19 | 18 | reseq1i 5392 |
. . . 4
⊢
(rec((𝑥 ∈ V,
𝑦 ∈ V ↦
〈(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) ↾ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) ↾ ω) |
| 20 | 3, 19 | eqtri 2644 |
. . 3
⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) ↾ ω) |
| 21 | 20 | rneqi 5352 |
. 2
⊢ ran 𝑅 = ran (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) ↾ ω) |
| 22 | 1, 2, 21 | 3eqtr4i 2654 |
1
⊢ seq𝑀( + , 𝐹) = ran 𝑅 |