![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sgrp2nmndlem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for sgrp2nmnd 17417. (Contributed by AV, 29-Jan-2020.) |
Ref | Expression |
---|---|
mgm2nsgrp.s | ⊢ 𝑆 = {𝐴, 𝐵} |
mgm2nsgrp.b | ⊢ (Base‘𝑀) = 𝑆 |
sgrp2nmnd.o | ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) |
sgrp2nmnd.p | ⊢ ⚬ = (+g‘𝑀) |
Ref | Expression |
---|---|
sgrp2nmndlem3 | ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐵 ⚬ 𝐶) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sgrp2nmnd.p | . . . 4 ⊢ ⚬ = (+g‘𝑀) | |
2 | sgrp2nmnd.o | . . . 4 ⊢ (+g‘𝑀) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) | |
3 | 1, 2 | eqtri 2644 | . . 3 ⊢ ⚬ = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵)) |
4 | 3 | a1i 11 | . 2 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → ⚬ = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ if(𝑥 = 𝐴, 𝐴, 𝐵))) |
5 | df-ne 2795 | . . . . . 6 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
6 | eqcom 2629 | . . . . . . . . 9 ⊢ (𝐴 = 𝑥 ↔ 𝑥 = 𝐴) | |
7 | eqeq2 2633 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐵 → (𝐴 = 𝑥 ↔ 𝐴 = 𝐵)) | |
8 | 7 | adantr 481 | . . . . . . . . 9 ⊢ ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → (𝐴 = 𝑥 ↔ 𝐴 = 𝐵)) |
9 | 6, 8 | syl5rbbr 275 | . . . . . . . 8 ⊢ ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → (𝐴 = 𝐵 ↔ 𝑥 = 𝐴)) |
10 | 9 | notbid 308 | . . . . . . 7 ⊢ ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → (¬ 𝐴 = 𝐵 ↔ ¬ 𝑥 = 𝐴)) |
11 | 10 | biimpcd 239 | . . . . . 6 ⊢ (¬ 𝐴 = 𝐵 → ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → ¬ 𝑥 = 𝐴)) |
12 | 5, 11 | sylbi 207 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 → ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → ¬ 𝑥 = 𝐴)) |
13 | 12 | 3ad2ant3 1084 | . . . 4 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → ¬ 𝑥 = 𝐴)) |
14 | 13 | imp 445 | . . 3 ⊢ (((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ (𝑥 = 𝐵 ∧ 𝑦 = 𝐶)) → ¬ 𝑥 = 𝐴) |
15 | 14 | iffalsed 4097 | . 2 ⊢ (((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) ∧ (𝑥 = 𝐵 ∧ 𝑦 = 𝐶)) → if(𝑥 = 𝐴, 𝐴, 𝐵) = 𝐵) |
16 | simp2 1062 | . 2 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝑆) | |
17 | simp1 1061 | . 2 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → 𝐶 ∈ 𝑆) | |
18 | 4, 15, 16, 17, 16 | ovmpt2d 6788 | 1 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (𝐵 ⚬ 𝐶) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ifcif 4086 {cpr 4179 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 Basecbs 15857 +gcplusg 15941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 |
This theorem is referenced by: sgrp2rid2 17413 sgrp2nmndlem4 17415 sgrp2nmndlem5 17416 |
Copyright terms: Public domain | W3C validator |