MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrpass Structured version   Visualization version   GIF version

Theorem sgrpass 17290
Description: A semigroup operation is associative. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 30-Jan-2020.)
Hypotheses
Ref Expression
sgrpass.b 𝐵 = (Base‘𝐺)
sgrpass.o = (+g𝐺)
Assertion
Ref Expression
sgrpass ((𝐺 ∈ SGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))

Proof of Theorem sgrpass
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sgrpass.b . . . 4 𝐵 = (Base‘𝐺)
2 sgrpass.o . . . 4 = (+g𝐺)
31, 2issgrp 17285 . . 3 (𝐺 ∈ SGrp ↔ (𝐺 ∈ Mgm ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
4 oveq1 6657 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 𝑦) = (𝑋 𝑦))
54oveq1d 6665 . . . . . 6 (𝑥 = 𝑋 → ((𝑥 𝑦) 𝑧) = ((𝑋 𝑦) 𝑧))
6 oveq1 6657 . . . . . 6 (𝑥 = 𝑋 → (𝑥 (𝑦 𝑧)) = (𝑋 (𝑦 𝑧)))
75, 6eqeq12d 2637 . . . . 5 (𝑥 = 𝑋 → (((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) ↔ ((𝑋 𝑦) 𝑧) = (𝑋 (𝑦 𝑧))))
8 oveq2 6658 . . . . . . 7 (𝑦 = 𝑌 → (𝑋 𝑦) = (𝑋 𝑌))
98oveq1d 6665 . . . . . 6 (𝑦 = 𝑌 → ((𝑋 𝑦) 𝑧) = ((𝑋 𝑌) 𝑧))
10 oveq1 6657 . . . . . . 7 (𝑦 = 𝑌 → (𝑦 𝑧) = (𝑌 𝑧))
1110oveq2d 6666 . . . . . 6 (𝑦 = 𝑌 → (𝑋 (𝑦 𝑧)) = (𝑋 (𝑌 𝑧)))
129, 11eqeq12d 2637 . . . . 5 (𝑦 = 𝑌 → (((𝑋 𝑦) 𝑧) = (𝑋 (𝑦 𝑧)) ↔ ((𝑋 𝑌) 𝑧) = (𝑋 (𝑌 𝑧))))
13 oveq2 6658 . . . . . 6 (𝑧 = 𝑍 → ((𝑋 𝑌) 𝑧) = ((𝑋 𝑌) 𝑍))
14 oveq2 6658 . . . . . . 7 (𝑧 = 𝑍 → (𝑌 𝑧) = (𝑌 𝑍))
1514oveq2d 6666 . . . . . 6 (𝑧 = 𝑍 → (𝑋 (𝑌 𝑧)) = (𝑋 (𝑌 𝑍)))
1613, 15eqeq12d 2637 . . . . 5 (𝑧 = 𝑍 → (((𝑋 𝑌) 𝑧) = (𝑋 (𝑌 𝑧)) ↔ ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍))))
177, 12, 16rspc3v 3325 . . . 4 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍))))
1817com12 32 . . 3 (∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)) → ((𝑋𝐵𝑌𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍))))
193, 18simplbiim 659 . 2 (𝐺 ∈ SGrp → ((𝑋𝐵𝑌𝐵𝑍𝐵) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍))))
2019imp 445 1 ((𝐺 ∈ SGrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  Mgmcmgm 17240  SGrpcsgrp 17283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-sgrp 17284
This theorem is referenced by:  mndass  17302  dfgrp2  17447  dfgrp3lem  17513  dfgrp3e  17515  mulgnndir  17569
  Copyright terms: Public domain W3C validator