MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrpass Structured version   Visualization version   Unicode version

Theorem sgrpass 17290
Description: A semigroup operation is associative. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 30-Jan-2020.)
Hypotheses
Ref Expression
sgrpass.b  |-  B  =  ( Base `  G
)
sgrpass.o  |-  .o.  =  ( +g  `  G )
Assertion
Ref Expression
sgrpass  |-  ( ( G  e. SGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .o.  Y )  .o. 
Z )  =  ( X  .o.  ( Y  .o.  Z ) ) )

Proof of Theorem sgrpass
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sgrpass.b . . . 4  |-  B  =  ( Base `  G
)
2 sgrpass.o . . . 4  |-  .o.  =  ( +g  `  G )
31, 2issgrp 17285 . . 3  |-  ( G  e. SGrp 
<->  ( G  e. Mgm  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  (
( x  .o.  y
)  .o.  z )  =  ( x  .o.  ( y  .o.  z
) ) ) )
4 oveq1 6657 . . . . . . 7  |-  ( x  =  X  ->  (
x  .o.  y )  =  ( X  .o.  y ) )
54oveq1d 6665 . . . . . 6  |-  ( x  =  X  ->  (
( x  .o.  y
)  .o.  z )  =  ( ( X  .o.  y )  .o.  z ) )
6 oveq1 6657 . . . . . 6  |-  ( x  =  X  ->  (
x  .o.  ( y  .o.  z ) )  =  ( X  .o.  (
y  .o.  z )
) )
75, 6eqeq12d 2637 . . . . 5  |-  ( x  =  X  ->  (
( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) )  <->  ( ( X  .o.  y )  .o.  z )  =  ( X  .o.  ( y  .o.  z ) ) ) )
8 oveq2 6658 . . . . . . 7  |-  ( y  =  Y  ->  ( X  .o.  y )  =  ( X  .o.  Y
) )
98oveq1d 6665 . . . . . 6  |-  ( y  =  Y  ->  (
( X  .o.  y
)  .o.  z )  =  ( ( X  .o.  Y )  .o.  z ) )
10 oveq1 6657 . . . . . . 7  |-  ( y  =  Y  ->  (
y  .o.  z )  =  ( Y  .o.  z ) )
1110oveq2d 6666 . . . . . 6  |-  ( y  =  Y  ->  ( X  .o.  ( y  .o.  z ) )  =  ( X  .o.  ( Y  .o.  z ) ) )
129, 11eqeq12d 2637 . . . . 5  |-  ( y  =  Y  ->  (
( ( X  .o.  y )  .o.  z
)  =  ( X  .o.  ( y  .o.  z ) )  <->  ( ( X  .o.  Y )  .o.  z )  =  ( X  .o.  ( Y  .o.  z ) ) ) )
13 oveq2 6658 . . . . . 6  |-  ( z  =  Z  ->  (
( X  .o.  Y
)  .o.  z )  =  ( ( X  .o.  Y )  .o. 
Z ) )
14 oveq2 6658 . . . . . . 7  |-  ( z  =  Z  ->  ( Y  .o.  z )  =  ( Y  .o.  Z
) )
1514oveq2d 6666 . . . . . 6  |-  ( z  =  Z  ->  ( X  .o.  ( Y  .o.  z ) )  =  ( X  .o.  ( Y  .o.  Z ) ) )
1613, 15eqeq12d 2637 . . . . 5  |-  ( z  =  Z  ->  (
( ( X  .o.  Y )  .o.  z
)  =  ( X  .o.  ( Y  .o.  z ) )  <->  ( ( X  .o.  Y )  .o. 
Z )  =  ( X  .o.  ( Y  .o.  Z ) ) ) )
177, 12, 16rspc3v 3325 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  ( ( x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) )  ->  ( ( X  .o.  Y )  .o. 
Z )  =  ( X  .o.  ( Y  .o.  Z ) ) ) )
1817com12 32 . . 3  |-  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  (
( x  .o.  y
)  .o.  z )  =  ( x  .o.  ( y  .o.  z
) )  ->  (
( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  ->  ( ( X  .o.  Y )  .o. 
Z )  =  ( X  .o.  ( Y  .o.  Z ) ) ) )
193, 18simplbiim 659 . 2  |-  ( G  e. SGrp  ->  ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  ->  (
( X  .o.  Y
)  .o.  Z )  =  ( X  .o.  ( Y  .o.  Z ) ) ) )
2019imp 445 1  |-  ( ( G  e. SGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .o.  Y )  .o. 
Z )  =  ( X  .o.  ( Y  .o.  Z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941  Mgmcmgm 17240  SGrpcsgrp 17283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-sgrp 17284
This theorem is referenced by:  mndass  17302  dfgrp2  17447  dfgrp3lem  17513  dfgrp3e  17515  mulgnndir  17569
  Copyright terms: Public domain W3C validator