Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isasslaw Structured version   Visualization version   GIF version

Theorem isasslaw 41828
Description: The predicate "is an associative operation". (Contributed by FL, 1-Nov-2009.) (Revised by AV, 13-Jan-2020.)
Assertion
Ref Expression
isasslaw (( 𝑉𝑀𝑊) → ( assLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
Distinct variable groups:   𝑥,𝑀,𝑦,𝑧   𝑥, ,𝑦,𝑧
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)

Proof of Theorem isasslaw
Dummy variables 𝑚 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . 3 ((𝑜 = 𝑚 = 𝑀) → 𝑚 = 𝑀)
2 id 22 . . . . . . . 8 (𝑜 = 𝑜 = )
3 oveq 6656 . . . . . . . 8 (𝑜 = → (𝑥𝑜𝑦) = (𝑥 𝑦))
4 eqidd 2623 . . . . . . . 8 (𝑜 = 𝑧 = 𝑧)
52, 3, 4oveq123d 6671 . . . . . . 7 (𝑜 = → ((𝑥𝑜𝑦)𝑜𝑧) = ((𝑥 𝑦) 𝑧))
6 eqidd 2623 . . . . . . . 8 (𝑜 = 𝑥 = 𝑥)
7 oveq 6656 . . . . . . . 8 (𝑜 = → (𝑦𝑜𝑧) = (𝑦 𝑧))
82, 6, 7oveq123d 6671 . . . . . . 7 (𝑜 = → (𝑥𝑜(𝑦𝑜𝑧)) = (𝑥 (𝑦 𝑧)))
95, 8eqeq12d 2637 . . . . . 6 (𝑜 = → (((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
109adantr 481 . . . . 5 ((𝑜 = 𝑚 = 𝑀) → (((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
111, 10raleqbidv 3152 . . . 4 ((𝑜 = 𝑚 = 𝑀) → (∀𝑧𝑚 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
121, 11raleqbidv 3152 . . 3 ((𝑜 = 𝑚 = 𝑀) → (∀𝑦𝑚𝑧𝑚 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
131, 12raleqbidv 3152 . 2 ((𝑜 = 𝑚 = 𝑀) → (∀𝑥𝑚𝑦𝑚𝑧𝑚 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
14 df-asslaw 41824 . 2 assLaw = {⟨𝑜, 𝑚⟩ ∣ ∀𝑥𝑚𝑦𝑚𝑧𝑚 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧))}
1513, 14brabga 4989 1 (( 𝑉𝑀𝑊) → ( assLaw 𝑀 ↔ ∀𝑥𝑀𝑦𝑀𝑧𝑀 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912   class class class wbr 4653  (class class class)co 6650   assLaw casslaw 41820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-iota 5851  df-fv 5896  df-ov 6653  df-asslaw 41824
This theorem is referenced by:  asslawass  41829  sgrpplusgaopALT  41831  isassintop  41846  assintopass  41850  sgrp2sgrp  41864
  Copyright terms: Public domain W3C validator