![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isasslaw | Structured version Visualization version GIF version |
Description: The predicate "is an associative operation". (Contributed by FL, 1-Nov-2009.) (Revised by AV, 13-Jan-2020.) |
Ref | Expression |
---|---|
isasslaw | ⊢ (( ⚬ ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → ( ⚬ assLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 477 | . . 3 ⊢ ((𝑜 = ⚬ ∧ 𝑚 = 𝑀) → 𝑚 = 𝑀) | |
2 | id 22 | . . . . . . . 8 ⊢ (𝑜 = ⚬ → 𝑜 = ⚬ ) | |
3 | oveq 6656 | . . . . . . . 8 ⊢ (𝑜 = ⚬ → (𝑥𝑜𝑦) = (𝑥 ⚬ 𝑦)) | |
4 | eqidd 2623 | . . . . . . . 8 ⊢ (𝑜 = ⚬ → 𝑧 = 𝑧) | |
5 | 2, 3, 4 | oveq123d 6671 | . . . . . . 7 ⊢ (𝑜 = ⚬ → ((𝑥𝑜𝑦)𝑜𝑧) = ((𝑥 ⚬ 𝑦) ⚬ 𝑧)) |
6 | eqidd 2623 | . . . . . . . 8 ⊢ (𝑜 = ⚬ → 𝑥 = 𝑥) | |
7 | oveq 6656 | . . . . . . . 8 ⊢ (𝑜 = ⚬ → (𝑦𝑜𝑧) = (𝑦 ⚬ 𝑧)) | |
8 | 2, 6, 7 | oveq123d 6671 | . . . . . . 7 ⊢ (𝑜 = ⚬ → (𝑥𝑜(𝑦𝑜𝑧)) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))) |
9 | 5, 8 | eqeq12d 2637 | . . . . . 6 ⊢ (𝑜 = ⚬ → (((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) |
10 | 9 | adantr 481 | . . . . 5 ⊢ ((𝑜 = ⚬ ∧ 𝑚 = 𝑀) → (((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) |
11 | 1, 10 | raleqbidv 3152 | . . . 4 ⊢ ((𝑜 = ⚬ ∧ 𝑚 = 𝑀) → (∀𝑧 ∈ 𝑚 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) |
12 | 1, 11 | raleqbidv 3152 | . . 3 ⊢ ((𝑜 = ⚬ ∧ 𝑚 = 𝑀) → (∀𝑦 ∈ 𝑚 ∀𝑧 ∈ 𝑚 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) |
13 | 1, 12 | raleqbidv 3152 | . 2 ⊢ ((𝑜 = ⚬ ∧ 𝑚 = 𝑀) → (∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 ∀𝑧 ∈ 𝑚 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧)) ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) |
14 | df-asslaw 41824 | . 2 ⊢ assLaw = {〈𝑜, 𝑚〉 ∣ ∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 ∀𝑧 ∈ 𝑚 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧))} | |
15 | 13, 14 | brabga 4989 | 1 ⊢ (( ⚬ ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → ( ⚬ assLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 class class class wbr 4653 (class class class)co 6650 assLaw casslaw 41820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-iota 5851 df-fv 5896 df-ov 6653 df-asslaw 41824 |
This theorem is referenced by: asslawass 41829 sgrpplusgaopALT 41831 isassintop 41846 assintopass 41850 sgrp2sgrp 41864 |
Copyright terms: Public domain | W3C validator |