Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstfval Structured version   Visualization version   GIF version

Theorem signstfval 30641
Description: Value of the zero-skipping sign word. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(#‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(#‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstfval ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(#‘𝐹))) → ((𝑇𝐹)‘𝑁) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹𝑖)))))
Distinct variable groups:   𝑓,𝑖,𝑛,𝐹   𝑖,𝑁,𝑛   𝑓,𝑊,𝑛
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑗,𝑎,𝑏)   𝑁(𝑓,𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑖,𝑗,𝑎,𝑏)

Proof of Theorem signstfval
StepHypRef Expression
1 signsv.p . . . 4 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
2 signsv.w . . . 4 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
3 signsv.t . . . 4 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(#‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
4 signsv.v . . . 4 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(#‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
51, 2, 3, 4signstfv 30640 . . 3 (𝐹 ∈ Word ℝ → (𝑇𝐹) = (𝑛 ∈ (0..^(#‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹𝑖))))))
65adantr 481 . 2 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(#‘𝐹))) → (𝑇𝐹) = (𝑛 ∈ (0..^(#‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹𝑖))))))
7 simpr 477 . . . . 5 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(#‘𝐹))) ∧ 𝑛 = 𝑁) → 𝑛 = 𝑁)
87oveq2d 6666 . . . 4 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(#‘𝐹))) ∧ 𝑛 = 𝑁) → (0...𝑛) = (0...𝑁))
98mpteq1d 4738 . . 3 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(#‘𝐹))) ∧ 𝑛 = 𝑁) → (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹𝑖))) = (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹𝑖))))
109oveq2d 6666 . 2 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(#‘𝐹))) ∧ 𝑛 = 𝑁) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹𝑖)))) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹𝑖)))))
11 simpr 477 . 2 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(#‘𝐹))) → 𝑁 ∈ (0..^(#‘𝐹)))
12 ovexd 6680 . 2 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(#‘𝐹))) → (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹𝑖)))) ∈ V)
136, 10, 11, 12fvmptd 6288 1 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(#‘𝐹))) → ((𝑇𝐹)‘𝑁) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹𝑖)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  ifcif 4086  {cpr 4179  {ctp 4181  cop 4183  cmpt 4729  cfv 5888  (class class class)co 6650  cmpt2 6652  cr 9935  0cc0 9936  1c1 9937  cmin 10266  -cneg 10267  ...cfz 12326  ..^cfzo 12465  #chash 13117  Word cword 13291  sgncsgn 13826  Σcsu 14416  ndxcnx 15854  Basecbs 15857  +gcplusg 15941   Σg cgsu 16101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653
This theorem is referenced by:  signstcl  30642  signstfvn  30646  signstfvp  30648
  Copyright terms: Public domain W3C validator