![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > signstfval | Structured version Visualization version GIF version |
Description: Value of the zero-skipping sign word. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
Ref | Expression |
---|---|
signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(#‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(#‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
Ref | Expression |
---|---|
signstfval | ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(#‘𝐹))) → ((𝑇‘𝐹)‘𝑁) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹‘𝑖))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | signsv.p | . . . 4 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
2 | signsv.w | . . . 4 ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} | |
3 | signsv.t | . . . 4 ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(#‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) | |
4 | signsv.v | . . . 4 ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(#‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) | |
5 | 1, 2, 3, 4 | signstfv 30640 | . . 3 ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹) = (𝑛 ∈ (0..^(#‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))))) |
6 | 5 | adantr 481 | . 2 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(#‘𝐹))) → (𝑇‘𝐹) = (𝑛 ∈ (0..^(#‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))))) |
7 | simpr 477 | . . . . 5 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(#‘𝐹))) ∧ 𝑛 = 𝑁) → 𝑛 = 𝑁) | |
8 | 7 | oveq2d 6666 | . . . 4 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(#‘𝐹))) ∧ 𝑛 = 𝑁) → (0...𝑛) = (0...𝑁)) |
9 | 8 | mpteq1d 4738 | . . 3 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(#‘𝐹))) ∧ 𝑛 = 𝑁) → (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖))) = (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹‘𝑖)))) |
10 | 9 | oveq2d 6666 | . 2 ⊢ (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(#‘𝐹))) ∧ 𝑛 = 𝑁) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹‘𝑖))))) |
11 | simpr 477 | . 2 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(#‘𝐹))) → 𝑁 ∈ (0..^(#‘𝐹))) | |
12 | ovexd 6680 | . 2 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(#‘𝐹))) → (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹‘𝑖)))) ∈ V) | |
13 | 6, 10, 11, 12 | fvmptd 6288 | 1 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(#‘𝐹))) → ((𝑇‘𝐹)‘𝑁) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹‘𝑖))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 Vcvv 3200 ifcif 4086 {cpr 4179 {ctp 4181 〈cop 4183 ↦ cmpt 4729 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 ℝcr 9935 0cc0 9936 1c1 9937 − cmin 10266 -cneg 10267 ...cfz 12326 ..^cfzo 12465 #chash 13117 Word cword 13291 sgncsgn 13826 Σcsu 14416 ndxcnx 15854 Basecbs 15857 +gcplusg 15941 Σg cgsu 16101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 |
This theorem is referenced by: signstcl 30642 signstfvn 30646 signstfvp 30648 |
Copyright terms: Public domain | W3C validator |