Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slenlt Structured version   Visualization version   GIF version

Theorem slenlt 31877
Description: Surreal less than or equal in terms of less than. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
slenlt ((𝐴 No 𝐵 No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴))

Proof of Theorem slenlt
StepHypRef Expression
1 df-sle 31870 . . . 4 ≤s = (( No × No ) ∖ <s )
21breqi 4659 . . 3 (𝐴 ≤s 𝐵𝐴(( No × No ) ∖ <s )𝐵)
3 brdif 4705 . . 3 (𝐴(( No × No ) ∖ <s )𝐵 ↔ (𝐴( No × No )𝐵 ∧ ¬ 𝐴 <s 𝐵))
4 brxp 5147 . . . 4 (𝐴( No × No )𝐵 ↔ (𝐴 No 𝐵 No ))
54anbi1i 731 . . 3 ((𝐴( No × No )𝐵 ∧ ¬ 𝐴 <s 𝐵) ↔ ((𝐴 No 𝐵 No ) ∧ ¬ 𝐴 <s 𝐵))
62, 3, 53bitri 286 . 2 (𝐴 ≤s 𝐵 ↔ ((𝐴 No 𝐵 No ) ∧ ¬ 𝐴 <s 𝐵))
7 ibar 525 . . 3 ((𝐴 No 𝐵 No ) → (¬ 𝐴 <s 𝐵 ↔ ((𝐴 No 𝐵 No ) ∧ ¬ 𝐴 <s 𝐵)))
8 brcnvg 5303 . . . 4 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵𝐵 <s 𝐴))
98notbid 308 . . 3 ((𝐴 No 𝐵 No ) → (¬ 𝐴 <s 𝐵 ↔ ¬ 𝐵 <s 𝐴))
107, 9bitr3d 270 . 2 ((𝐴 No 𝐵 No ) → (((𝐴 No 𝐵 No ) ∧ ¬ 𝐴 <s 𝐵) ↔ ¬ 𝐵 <s 𝐴))
116, 10syl5bb 272 1 ((𝐴 No 𝐵 No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wcel 1990  cdif 3571   class class class wbr 4653   × cxp 5112  ccnv 5113   No csur 31793   <s cslt 31794   ≤s csle 31869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-sle 31870
This theorem is referenced by:  sltnle  31878  sleloe  31879  sletri3  31880  sltletr  31881  slelttr  31882  sletr  31883  sltrec  31924
  Copyright terms: Public domain W3C validator