Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sltrec Structured version   Visualization version   GIF version

Theorem sltrec 31924
Description: A comparison law for surreals considered as cuts of sets of surreals. (Contributed by Scott Fenton, 11-Dec-2021.)
Assertion
Ref Expression
sltrec (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑋 <s 𝑌 ↔ (∃𝑐𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏𝐵 𝑏 ≤s 𝑌)))
Distinct variable groups:   𝐴,𝑏,𝑐   𝐵,𝑏,𝑐   𝐶,𝑏,𝑐   𝐷,𝑏,𝑐   𝑋,𝑏,𝑐   𝑌,𝑏,𝑐

Proof of Theorem sltrec
StepHypRef Expression
1 simplr 792 . . . . 5 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝐶 <<s 𝐷)
2 simpll 790 . . . . 5 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝐴 <<s 𝐵)
3 simprr 796 . . . . 5 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝑌 = (𝐶 |s 𝐷))
4 simprl 794 . . . . 5 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝑋 = (𝐴 |s 𝐵))
5 slerec 31923 . . . . 5 (((𝐶 <<s 𝐷𝐴 <<s 𝐵) ∧ (𝑌 = (𝐶 |s 𝐷) ∧ 𝑋 = (𝐴 |s 𝐵))) → (𝑌 ≤s 𝑋 ↔ (∀𝑏𝐵 𝑌 <s 𝑏 ∧ ∀𝑐𝐶 𝑐 <s 𝑋)))
61, 2, 3, 4, 5syl22anc 1327 . . . 4 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑌 ≤s 𝑋 ↔ (∀𝑏𝐵 𝑌 <s 𝑏 ∧ ∀𝑐𝐶 𝑐 <s 𝑋)))
7 ancom 466 . . . 4 ((∀𝑏𝐵 𝑌 <s 𝑏 ∧ ∀𝑐𝐶 𝑐 <s 𝑋) ↔ (∀𝑐𝐶 𝑐 <s 𝑋 ∧ ∀𝑏𝐵 𝑌 <s 𝑏))
86, 7syl6bb 276 . . 3 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑌 ≤s 𝑋 ↔ (∀𝑐𝐶 𝑐 <s 𝑋 ∧ ∀𝑏𝐵 𝑌 <s 𝑏)))
9 scutcut 31912 . . . . . . 7 (𝐶 <<s 𝐷 → ((𝐶 |s 𝐷) ∈ No 𝐶 <<s {(𝐶 |s 𝐷)} ∧ {(𝐶 |s 𝐷)} <<s 𝐷))
109simp1d 1073 . . . . . 6 (𝐶 <<s 𝐷 → (𝐶 |s 𝐷) ∈ No )
1110ad2antlr 763 . . . . 5 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝐶 |s 𝐷) ∈ No )
123, 11eqeltrd 2701 . . . 4 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝑌 No )
13 scutcut 31912 . . . . . . 7 (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
1413simp1d 1073 . . . . . 6 (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) ∈ No )
1514ad2antrr 762 . . . . 5 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝐴 |s 𝐵) ∈ No )
164, 15eqeltrd 2701 . . . 4 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝑋 No )
17 slenlt 31877 . . . 4 ((𝑌 No 𝑋 No ) → (𝑌 ≤s 𝑋 ↔ ¬ 𝑋 <s 𝑌))
1812, 16, 17syl2anc 693 . . 3 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑌 ≤s 𝑋 ↔ ¬ 𝑋 <s 𝑌))
19 ssltss1 31903 . . . . . . . . 9 (𝐶 <<s 𝐷𝐶 No )
2019ad2antlr 763 . . . . . . . 8 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝐶 No )
2120sselda 3603 . . . . . . 7 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) ∧ 𝑐𝐶) → 𝑐 No )
2216adantr 481 . . . . . . 7 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) ∧ 𝑐𝐶) → 𝑋 No )
23 sltnle 31878 . . . . . . 7 ((𝑐 No 𝑋 No ) → (𝑐 <s 𝑋 ↔ ¬ 𝑋 ≤s 𝑐))
2421, 22, 23syl2anc 693 . . . . . 6 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) ∧ 𝑐𝐶) → (𝑐 <s 𝑋 ↔ ¬ 𝑋 ≤s 𝑐))
2524ralbidva 2985 . . . . 5 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (∀𝑐𝐶 𝑐 <s 𝑋 ↔ ∀𝑐𝐶 ¬ 𝑋 ≤s 𝑐))
2612adantr 481 . . . . . . 7 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) ∧ 𝑏𝐵) → 𝑌 No )
27 ssltss2 31904 . . . . . . . . 9 (𝐴 <<s 𝐵𝐵 No )
2827ad2antrr 762 . . . . . . . 8 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → 𝐵 No )
2928sselda 3603 . . . . . . 7 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) ∧ 𝑏𝐵) → 𝑏 No )
30 sltnle 31878 . . . . . . 7 ((𝑌 No 𝑏 No ) → (𝑌 <s 𝑏 ↔ ¬ 𝑏 ≤s 𝑌))
3126, 29, 30syl2anc 693 . . . . . 6 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) ∧ 𝑏𝐵) → (𝑌 <s 𝑏 ↔ ¬ 𝑏 ≤s 𝑌))
3231ralbidva 2985 . . . . 5 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (∀𝑏𝐵 𝑌 <s 𝑏 ↔ ∀𝑏𝐵 ¬ 𝑏 ≤s 𝑌))
3325, 32anbi12d 747 . . . 4 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → ((∀𝑐𝐶 𝑐 <s 𝑋 ∧ ∀𝑏𝐵 𝑌 <s 𝑏) ↔ (∀𝑐𝐶 ¬ 𝑋 ≤s 𝑐 ∧ ∀𝑏𝐵 ¬ 𝑏 ≤s 𝑌)))
34 ralnex 2992 . . . . . 6 (∀𝑐𝐶 ¬ 𝑋 ≤s 𝑐 ↔ ¬ ∃𝑐𝐶 𝑋 ≤s 𝑐)
35 ralnex 2992 . . . . . 6 (∀𝑏𝐵 ¬ 𝑏 ≤s 𝑌 ↔ ¬ ∃𝑏𝐵 𝑏 ≤s 𝑌)
3634, 35anbi12i 733 . . . . 5 ((∀𝑐𝐶 ¬ 𝑋 ≤s 𝑐 ∧ ∀𝑏𝐵 ¬ 𝑏 ≤s 𝑌) ↔ (¬ ∃𝑐𝐶 𝑋 ≤s 𝑐 ∧ ¬ ∃𝑏𝐵 𝑏 ≤s 𝑌))
37 ioran 511 . . . . 5 (¬ (∃𝑐𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏𝐵 𝑏 ≤s 𝑌) ↔ (¬ ∃𝑐𝐶 𝑋 ≤s 𝑐 ∧ ¬ ∃𝑏𝐵 𝑏 ≤s 𝑌))
3836, 37bitr4i 267 . . . 4 ((∀𝑐𝐶 ¬ 𝑋 ≤s 𝑐 ∧ ∀𝑏𝐵 ¬ 𝑏 ≤s 𝑌) ↔ ¬ (∃𝑐𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏𝐵 𝑏 ≤s 𝑌))
3933, 38syl6bb 276 . . 3 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → ((∀𝑐𝐶 𝑐 <s 𝑋 ∧ ∀𝑏𝐵 𝑌 <s 𝑏) ↔ ¬ (∃𝑐𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏𝐵 𝑏 ≤s 𝑌)))
408, 18, 393bitr3d 298 . 2 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (¬ 𝑋 <s 𝑌 ↔ ¬ (∃𝑐𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏𝐵 𝑏 ≤s 𝑌)))
4140con4bid 307 1 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑋 <s 𝑌 ↔ (∃𝑐𝐶 𝑋 ≤s 𝑐 ∨ ∃𝑏𝐵 𝑏 ≤s 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  wss 3574  {csn 4177   class class class wbr 4653  (class class class)co 6650   No csur 31793   <s cslt 31794   ≤s csle 31869   <<s csslt 31896   |s cscut 31898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1o 7560  df-2o 7561  df-no 31796  df-slt 31797  df-bday 31798  df-sle 31870  df-sslt 31897  df-scut 31899
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator