Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elima4 Structured version   Visualization version   GIF version

Theorem elima4 31679
Description: Quantifier-free expression saying that a class is a member of an image. (Contributed by Scott Fenton, 8-May-2018.)
Assertion
Ref Expression
elima4 (𝐴 ∈ (𝑅𝐵) ↔ (𝑅 ∩ (𝐵 × {𝐴})) ≠ ∅)

Proof of Theorem elima4
Dummy variables 𝑥 𝑝 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2 (𝐴 ∈ (𝑅𝐵) → 𝐴 ∈ V)
2 xpeq2 5129 . . . . . . 7 ({𝐴} = ∅ → (𝐵 × {𝐴}) = (𝐵 × ∅))
3 xp0 5552 . . . . . . 7 (𝐵 × ∅) = ∅
42, 3syl6eq 2672 . . . . . 6 ({𝐴} = ∅ → (𝐵 × {𝐴}) = ∅)
54ineq2d 3814 . . . . 5 ({𝐴} = ∅ → (𝑅 ∩ (𝐵 × {𝐴})) = (𝑅 ∩ ∅))
6 in0 3968 . . . . 5 (𝑅 ∩ ∅) = ∅
75, 6syl6eq 2672 . . . 4 ({𝐴} = ∅ → (𝑅 ∩ (𝐵 × {𝐴})) = ∅)
87necon3i 2826 . . 3 ((𝑅 ∩ (𝐵 × {𝐴})) ≠ ∅ → {𝐴} ≠ ∅)
9 snnzb 4254 . . 3 (𝐴 ∈ V ↔ {𝐴} ≠ ∅)
108, 9sylibr 224 . 2 ((𝑅 ∩ (𝐵 × {𝐴})) ≠ ∅ → 𝐴 ∈ V)
11 eleq1 2689 . . 3 (𝑥 = 𝐴 → (𝑥 ∈ (𝑅𝐵) ↔ 𝐴 ∈ (𝑅𝐵)))
12 sneq 4187 . . . . . 6 (𝑥 = 𝐴 → {𝑥} = {𝐴})
1312xpeq2d 5139 . . . . 5 (𝑥 = 𝐴 → (𝐵 × {𝑥}) = (𝐵 × {𝐴}))
1413ineq2d 3814 . . . 4 (𝑥 = 𝐴 → (𝑅 ∩ (𝐵 × {𝑥})) = (𝑅 ∩ (𝐵 × {𝐴})))
1514neeq1d 2853 . . 3 (𝑥 = 𝐴 → ((𝑅 ∩ (𝐵 × {𝑥})) ≠ ∅ ↔ (𝑅 ∩ (𝐵 × {𝐴})) ≠ ∅))
16 elin 3796 . . . . . . 7 (𝑝 ∈ (𝑅 ∩ (𝐵 × {𝑥})) ↔ (𝑝𝑅𝑝 ∈ (𝐵 × {𝑥})))
17 ancom 466 . . . . . . 7 ((𝑝𝑅𝑝 ∈ (𝐵 × {𝑥})) ↔ (𝑝 ∈ (𝐵 × {𝑥}) ∧ 𝑝𝑅))
18 elxp 5131 . . . . . . . 8 (𝑝 ∈ (𝐵 × {𝑥}) ↔ ∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})))
1918anbi1i 731 . . . . . . 7 ((𝑝 ∈ (𝐵 × {𝑥}) ∧ 𝑝𝑅) ↔ (∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})) ∧ 𝑝𝑅))
2016, 17, 193bitri 286 . . . . . 6 (𝑝 ∈ (𝑅 ∩ (𝐵 × {𝑥})) ↔ (∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})) ∧ 𝑝𝑅))
2120exbii 1774 . . . . 5 (∃𝑝 𝑝 ∈ (𝑅 ∩ (𝐵 × {𝑥})) ↔ ∃𝑝(∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})) ∧ 𝑝𝑅))
22 anass 681 . . . . . . . . 9 (((𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})) ∧ 𝑝𝑅) ↔ (𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)))
23222exbii 1775 . . . . . . . 8 (∃𝑦𝑧((𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})) ∧ 𝑝𝑅) ↔ ∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)))
24 19.41vv 1915 . . . . . . . 8 (∃𝑦𝑧((𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})) ∧ 𝑝𝑅) ↔ (∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})) ∧ 𝑝𝑅))
2523, 24bitr3i 266 . . . . . . 7 (∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)) ↔ (∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})) ∧ 𝑝𝑅))
2625exbii 1774 . . . . . 6 (∃𝑝𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)) ↔ ∃𝑝(∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})) ∧ 𝑝𝑅))
27 exrot3 2045 . . . . . 6 (∃𝑝𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)) ↔ ∃𝑦𝑧𝑝(𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)))
2826, 27bitr3i 266 . . . . 5 (∃𝑝(∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})) ∧ 𝑝𝑅) ↔ ∃𝑦𝑧𝑝(𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)))
29 opex 4932 . . . . . . . . 9 𝑦, 𝑧⟩ ∈ V
30 eleq1 2689 . . . . . . . . . 10 (𝑝 = ⟨𝑦, 𝑧⟩ → (𝑝𝑅 ↔ ⟨𝑦, 𝑧⟩ ∈ 𝑅))
3130anbi2d 740 . . . . . . . . 9 (𝑝 = ⟨𝑦, 𝑧⟩ → (((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅) ↔ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅)))
3229, 31ceqsexv 3242 . . . . . . . 8 (∃𝑝(𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)) ↔ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅))
3332exbii 1774 . . . . . . 7 (∃𝑧𝑝(𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)) ↔ ∃𝑧((𝑦𝐵𝑧 ∈ {𝑥}) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅))
34 anass 681 . . . . . . . . 9 (((𝑦𝐵𝑧 ∈ {𝑥}) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅) ↔ (𝑦𝐵 ∧ (𝑧 ∈ {𝑥} ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅)))
35 an12 838 . . . . . . . . 9 ((𝑦𝐵 ∧ (𝑧 ∈ {𝑥} ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅)) ↔ (𝑧 ∈ {𝑥} ∧ (𝑦𝐵 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅)))
36 velsn 4193 . . . . . . . . . 10 (𝑧 ∈ {𝑥} ↔ 𝑧 = 𝑥)
3736anbi1i 731 . . . . . . . . 9 ((𝑧 ∈ {𝑥} ∧ (𝑦𝐵 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅)) ↔ (𝑧 = 𝑥 ∧ (𝑦𝐵 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅)))
3834, 35, 373bitri 286 . . . . . . . 8 (((𝑦𝐵𝑧 ∈ {𝑥}) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅) ↔ (𝑧 = 𝑥 ∧ (𝑦𝐵 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅)))
3938exbii 1774 . . . . . . 7 (∃𝑧((𝑦𝐵𝑧 ∈ {𝑥}) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅) ↔ ∃𝑧(𝑧 = 𝑥 ∧ (𝑦𝐵 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅)))
40 vex 3203 . . . . . . . 8 𝑥 ∈ V
41 opeq2 4403 . . . . . . . . . 10 (𝑧 = 𝑥 → ⟨𝑦, 𝑧⟩ = ⟨𝑦, 𝑥⟩)
4241eleq1d 2686 . . . . . . . . 9 (𝑧 = 𝑥 → (⟨𝑦, 𝑧⟩ ∈ 𝑅 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝑅))
4342anbi2d 740 . . . . . . . 8 (𝑧 = 𝑥 → ((𝑦𝐵 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅) ↔ (𝑦𝐵 ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅)))
4440, 43ceqsexv 3242 . . . . . . 7 (∃𝑧(𝑧 = 𝑥 ∧ (𝑦𝐵 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅)) ↔ (𝑦𝐵 ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅))
4533, 39, 443bitri 286 . . . . . 6 (∃𝑧𝑝(𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)) ↔ (𝑦𝐵 ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅))
4645exbii 1774 . . . . 5 (∃𝑦𝑧𝑝(𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)) ↔ ∃𝑦(𝑦𝐵 ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅))
4721, 28, 463bitri 286 . . . 4 (∃𝑝 𝑝 ∈ (𝑅 ∩ (𝐵 × {𝑥})) ↔ ∃𝑦(𝑦𝐵 ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅))
48 n0 3931 . . . 4 ((𝑅 ∩ (𝐵 × {𝑥})) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ (𝑅 ∩ (𝐵 × {𝑥})))
4940elima3 5473 . . . 4 (𝑥 ∈ (𝑅𝐵) ↔ ∃𝑦(𝑦𝐵 ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅))
5047, 48, 493bitr4ri 293 . . 3 (𝑥 ∈ (𝑅𝐵) ↔ (𝑅 ∩ (𝐵 × {𝑥})) ≠ ∅)
5111, 15, 50vtoclbg 3267 . 2 (𝐴 ∈ V → (𝐴 ∈ (𝑅𝐵) ↔ (𝑅 ∩ (𝐵 × {𝐴})) ≠ ∅))
521, 10, 51pm5.21nii 368 1 (𝐴 ∈ (𝑅𝐵) ↔ (𝑅 ∩ (𝐵 × {𝐴})) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wne 2794  Vcvv 3200  cin 3573  c0 3915  {csn 4177  cop 4183   × cxp 5112  cima 5117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator